Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 8, 2010

pH impact on the sol-gel preparation of calcium hydroxyapatite, Ca10(PO4)6(OH)2, using a novel complexing agent, DCTA

  • Irma Bogdanoviciene EMAIL logo , Kaia Tőnsuaadu , Valdek Mikli , Inga Grigoraviciute-Puroniene , Aldona Beganskiene and Aivaras Kareiva
From the journal Open Chemistry

Abstract

Aqueous sol-gel chemistry routes — based on ammonium hydrogen phosphate as the phosphorus precursor, calcium acetate monohydrate as the source of calcium ions, and 1,2-diaminocyclohexanetetraacetic acid monohydrate (DCTA) as the complexing agent — have been used to prepare calcium hydroxyapatite (HA). The sol-gel process was performed in aqueous solution at different pH values followed by calcination of the dry precursor gels for 5 h at 1000°C. Phase transformations, composition, and structural changes in the polycrystalline samples were studied by thermoanalytical methods (TG/DTA), infrared spectroscopy (IR), X-ray powder diffraction analysis (XRD), and scanning electron microscopy (SEM). It was shown that pH adjustment has significant impact on the apatite formation process and on the morphology and phase purity of the ceramic samples.

[1] S.V. Dorozhkin, J. Mater. Sci. 44, 2343 (2009) http://dx.doi.org/10.1007/s10853-008-3124-x10.1007/s10853-008-3124-xSearch in Google Scholar

[2] A. Bigi, E. Boanini, K. Rubini, J. Solid State Chem. 177, 3092 (2004) http://dx.doi.org/10.1016/j.jssc.2004.05.01810.1016/j.jssc.2004.05.018Search in Google Scholar

[3] J. Liu, K. Li, H. Wang, M. Zhu, H. Yan, Chem. Phys. Lett. 396, 429 (2004) http://dx.doi.org/10.1016/j.cplett.2004.08.09410.1016/j.cplett.2004.08.094Search in Google Scholar

[4] C.E. Fowler, M. Li, S. Mann, H.C. Margolis, J. Mater. Chem. 15, 3317 (2005) http://dx.doi.org/10.1039/b503312h10.1039/b503312hSearch in Google Scholar

[5] G. Goller, F.N. Oktar, S. Agathopoulos, D.U. Tulyaganov, J.M.F. Ferreira, E.S. Kayali, I. Peker, J. Sol-Gel Sci. Technol. 37, 111 (2006) http://dx.doi.org/10.1007/s10971-006-6428-910.1007/s10971-006-6428-9Search in Google Scholar

[6] G. De With, H.J.A. Van Dijk, N. Hattu, K. Prijs, J. Mater. Sci. 16, 1592 (1981) http://dx.doi.org/10.1007/BF0239687610.1007/BF02396876Search in Google Scholar

[7] A. Bigi, S. Panzavolta, K. Rubini, Chem. Mater. 16, 3740 (2004) http://dx.doi.org/10.1021/cm049363e10.1021/cm049363eSearch in Google Scholar

[8] S. Jalota, A.C. Tas, S.B. Bhaduri, J. Am. Ceram. Soc. 88, 3353 (2005) http://dx.doi.org/10.1111/j.1551-2916.2005.00623.x10.1111/j.1551-2916.2005.00623.xSearch in Google Scholar

[9] J.M. Cao, J. Feng, S.G. Deng, X. Chang, J. Wang, J.S. Liu, P. Lu, H.X. Lu, M.B. Zheng, F. Zhang, J. Tao, J. Mater. Sci. 40, 6311 (2005) http://dx.doi.org/10.1007/s10853-005-4221-810.1007/s10853-005-4221-8Search in Google Scholar

[10] H. Kimura, K. Kitahara, M. Naka, J. Jpn. Inst. Metals 70, 1 (2006) http://dx.doi.org/10.2320/jinstmet.70.110.2320/jinstmet.70.1Search in Google Scholar

[11] E.F. Burguera, F. Guitian, L.C. Chow, J. Biomed. Mater. Res. Part A 85A, 674 (2008) http://dx.doi.org/10.1002/jbm.a.3147810.1002/jbm.a.31478Search in Google Scholar

[12] M. Aizawa, T. Hanazawa, K. Itatani, F.S. Howell, A. Kishioka, J. Mater. Sci. 34, 2865 (1999) http://dx.doi.org/10.1023/A:100463541865510.1023/A:1004635418655Search in Google Scholar

[13] H.K. Varma, S.N. Kalkura, R. Sivakumar, Ceram. Int. 24, 467 (1998) http://dx.doi.org/10.1016/S0272-8842(97)00038-210.1016/S0272-8842(97)00038-2Search in Google Scholar

[14] M. Iijima, J. Moradian-Oldak, Biomaterials 26, 1595 (2005) http://dx.doi.org/10.1016/j.biomaterials.2004.05.00910.1016/j.biomaterials.2004.05.009Search in Google Scholar

[15] M. Yoshimura, H. Suda, K. Okamoto, K. Ioku, J. Mater. Sci. 29, 3399 (1994) http://dx.doi.org/10.1007/BF0035203910.1007/BF00352039Search in Google Scholar

[16] D. Janackovic, I. Jankovic, R. Petrovic, L. Kostic-Gvozdenovic, S. Milonjic, D. Uskokovic, Key Eng. Mater. 240–242, 437 (2003) http://dx.doi.org/10.4028/www.scientific.net/KEM.240-242.43710.4028/www.scientific.net/KEM.240-242.437Search in Google Scholar

[17] J.B. Liu, X.Y. Ye, H. Wang, M.K. Zhu, B. Wang, H. Yan, Ceram. Int. 29, 629 (2003) http://dx.doi.org/10.1016/S0272-8842(02)00210-910.1016/S0272-8842(02)00210-9Search in Google Scholar

[18] A. Slosarczyk, E. Stobierska, Z. Paszkiewicz, M. Gawlicki, J. Am. Ceram. Soc. 79, 2539 (1996) http://dx.doi.org/10.1111/j.1151-2916.1996.tb09013.x10.1111/j.1151-2916.1996.tb09013.xSearch in Google Scholar

[19] K. Kandori, N. Horigami, A. Yasukawa, J. Am. Ceram. Soc. 80, 1157 (1997) http://dx.doi.org/10.1111/j.1151-2916.1997.tb02958.x10.1111/j.1151-2916.1997.tb02958.xSearch in Google Scholar

[20] A. Lopez-Macipe, J. Gomez-Morales, R. Rodriguez-Clemente, Adv. Mater. 10, 49 (1998) http://dx.doi.org/10.1002/(SICI)1521-4095(199801)10:1<49::AID-ADMA49>3.0.CO;2-R10.1002/(SICI)1521-4095(199801)10:1<49::AID-ADMA49>3.0.CO;2-RSearch in Google Scholar

[21] R.N. Panda, M.F. Hsieh, R.J. Chung, T.S. Chin, J. Phys. Chem. Solids 64, 193 (2003) http://dx.doi.org/10.1016/S0022-3697(02)00257-310.1016/S0022-3697(02)00257-3Search in Google Scholar

[22] M. Kawata, H. Uchida, K. Itatani, I. Okada, S. Koda, M. Aizawa, J. Mater. Sci.: Mater. Med. 15, 817 (2004) http://dx.doi.org/10.1023/B:JMSM.0000032823.66093.aa10.1023/B:JMSM.0000032823.66093.aaSearch in Google Scholar

[23] H-W. Kim, Y-H. Koh, Y-M. Kong, J-G. Kang, H-E. Kim, J. Mater. Sci.: Mater. Med. 15, 1129 (2004) http://dx.doi.org/10.1023/B:JMSM.0000046395.76435.6010.1023/B:JMSM.0000046395.76435.60Search in Google Scholar

[24] A. Osaka, K. Tsuru, H. Iida, C. Ohtsuki, S. Hayakawa, Y. Miura, J. Sol-Gel Sci. Technol. 8, 655 (1997) 10.1007/BF02436918Search in Google Scholar

[25] H.K. Varma, S.S. Babu, Ceram. Int. 31, 109 (2005) http://dx.doi.org/10.1016/j.ceramint.2004.03.04110.1016/j.ceramint.2004.03.041Search in Google Scholar

[26] C.J. Brinker, G.W. Scherrer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990) Search in Google Scholar

[27] J. Livage, P. Barboux, F. Taulelle, J. Non-Cryst. Solids 147–148, 18 (1992) http://dx.doi.org/10.1016/S0022-3093(05)80586-110.1016/S0022-3093(05)80586-1Search in Google Scholar

[28] J. Zarzycki, J. Sol-Gel Sci. Technol. 8, 17 (1997) 10.1007/BF02436811Search in Google Scholar

[29] D.R. Uhlmann, G.J. Teowee, J. Sol-Gel Sci. Technol. 13, 153 (1998) http://dx.doi.org/10.1023/A:100869243077910.1023/A:1008692430779Search in Google Scholar

[30] C. Sanchez, F. Ribot, B. Lebeau, J. Mater. Chem. 9, 35 (1999) http://dx.doi.org/10.1039/a805538f10.1039/a805538fSearch in Google Scholar

[31] C. Sanchez, B. Lebeau, F. Ribot, M. In, J. Sol-Gel Sci. Technol. 19, 31 (2000) http://dx.doi.org/10.1023/A:100875391992510.1023/A:1008753919925Search in Google Scholar

[32] A. Baranauskas, D. Jasaitis, A. Kareiva, Vibr. Spectrosc. 28, 263 (2002) http://dx.doi.org/10.1016/S0924-2031(01)00157-610.1016/S0924-2031(01)00157-6Search in Google Scholar

[33] C. Sanchez, G.J.D.A.A. Soler-Illia, F. Ribot, D. Grosso, C. R. Chimie 6, 1131 (2003) 10.1016/j.crci.2003.06.001Search in Google Scholar

[34] B.L. Cushing, V.L. Kolesnichenko, C.J. O’Connor, Chem. Rev. 104, 3893 (2004) http://dx.doi.org/10.1021/cr030027b10.1021/cr030027bSearch in Google Scholar

[35] Y. Masuda, K. Matubara, S. Sakka, J. Ceram. Soc. Jpn. 98, 1255 (1990) 10.2109/jcersj.98.1255Search in Google Scholar

[36] P. Layrolle, A. Lebugle, Chem. Mater. 6, 1996 (1994) http://dx.doi.org/10.1021/cm00047a01910.1021/cm00047a019Search in Google Scholar

[37] A. Jillavenkatesa, Sr. R.A. Condrate, J. Mater. Sci. 33, 4111 (1998) http://dx.doi.org/10.1023/A:100443673228210.1023/A:1004436732282Search in Google Scholar

[38] W.J. Weng, J.L. Baptista, Biomaterials 19, 125 (1998) http://dx.doi.org/10.1016/S0142-9612(97)00177-410.1016/S0142-9612(97)00177-4Search in Google Scholar

[39] P. Layrolle, A. Ito, T. Tateishi, J. Am. Ceram. Soc. 81, 1421 (1998) http://dx.doi.org/10.1111/j.1151-2916.1998.tb02499.x10.1111/j.1151-2916.1998.tb02499.xSearch in Google Scholar

[40] C.S. Chai, K.A. Gross, B. Ben-Nissan, Biomaterials 19, 2291 (1998) http://dx.doi.org/10.1016/S0142-9612(98)90138-710.1016/S0142-9612(98)90138-7Search in Google Scholar

[41] B. Ben-Nissan, D.D. Green, G.S.K. Kannangara, C.S. Chai, A. Milev, J. Sol-Gel Sci. Technol. 21, 27 (2001) http://dx.doi.org/10.1023/A:101128182685010.1023/A:1011281826850Search in Google Scholar

[42] D.M. Liu, T. Troczynski, W.J. Tseng, Biomaterials 22, 1721 (2001) http://dx.doi.org/10.1016/S0142-9612(00)00332-X10.1016/S0142-9612(00)00332-XSearch in Google Scholar

[43] M.F. Hsieh, L.H. Perng, T.S. Chin, H.G. Perng, Biomaterials 22, 2601 (2001) http://dx.doi.org/10.1016/S0142-9612(00)00448-810.1016/S0142-9612(00)00448-8Search in Google Scholar

[44] E. Tkalcec, M. Sauer, R. Nonninger, H. Schmidt, J. Mater. Sci. 36, 5253 (2001) http://dx.doi.org/10.1023/A:101246233244010.1023/A:1012462332440Search in Google Scholar

[45] S.R. Ramanan, R. Venkatesh, Mater. Lett. 58, 3320 (2004) http://dx.doi.org/10.1016/j.matlet.2004.06.03010.1016/j.matlet.2004.06.030Search in Google Scholar

[46] H. Zreiqat, R. Roest, S. Valenzuela, A. Milev, B. Ben-Nissan, Key Eng. Mater. 284–286, 541 (2005) http://dx.doi.org/10.4028/www.scientific.net/KEM.284-286.54110.4028/www.scientific.net/KEM.284-286.541Search in Google Scholar

[47] G. Gergely, F. Weber, I. Lukacs, L. Illes, A.L. Toth, Z.E. Horvath, J. Mihaly, C. Balazsi, Cent. Eur. J. Chem. 8, 375 (2010) http://dx.doi.org/10.2478/s11532-010-0004-410.2478/s11532-010-0004-4Search in Google Scholar

[48] I. Bogdanoviciene, A. Beganskiene, K. Tõnsuaadu, J. Glaser, H-J. Meyer, A. Kareiva, Mater. Res. Bull. 41, 1754 (2006) http://dx.doi.org/10.1016/j.materresbull.2006.02.01610.1016/j.materresbull.2006.02.016Search in Google Scholar

[49] I. Bogdanoviciene, K. Tõnsuaadu, A. Kareiva, Polish J. Chem. 83, 47 (2009) Search in Google Scholar

[50] K. Tõnsuaadu, M. Peld, V. Bender, J. Therm. Anal. Calorim. 72, 363 (2003) http://dx.doi.org/10.1023/A:102391711385010.1023/A:1023917113850Search in Google Scholar

[51] A. Antonakos, E. Liarokapis, T. Leventouri, Biomater. 28, 3043 (2007) http://dx.doi.org/10.1016/j.biomaterials.2007.02.02810.1016/j.biomaterials.2007.02.028Search in Google Scholar PubMed

[52] R.A. Nyquist, C.L. Putzig, M.A. Leugers, Infrared and Raman Spectral Atlas of Inorganic Compounds and Organic Salts: Text and explanations (Academic Press, San Diego, 1996) Volume 4 Search in Google Scholar

Published Online: 2010-10-8
Published in Print: 2010-12-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-010-0113-0/html
Scroll to top button