Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access November 27, 2013

Silica synthesis by the sol-gel method and its use in the preparation of multifunctional biocomposites

  • Łukasz Klapiszewski EMAIL logo , Michał Królak and Teofil Jesionowski
From the journal Open Chemistry

Abstract

This study focuses on the optimization process of silica synthesis using the sol-gel method while applying a statistical design of experiments which was based on a multilevel mathematical model. The product obtained in the process of optimized synthesis, characterized by the best dispersive and morphological parameters, was used for the preparation of organic/inorganic composites. The organic precursor was Kraft lignin, a high-molecular natural polymer. Synthesis of silica/lignin biocomposites was carried out by three proposed methods. The physicochemical properties and dispersive-morphological properties of each product were determined using the following available methods: Scanning Electron Microscopy — SEM, Non-Invasive Back-Scattering — NIBS, Fourier Transform Infrared Spectroscopy — FT-IR, Thermogravimetric analysis — TG and others. The electrokinetic and thermal properties of the biocomposites sufficed to be applied for example, as a cheap and biodegradable polymer filler. Further areas of application of these composites were sought, especially in electrochemistry as the advanced electrode materials.

[1] W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968) http://dx.doi.org/10.1016/0021-9797(68)90272-510.1016/0021-9797(68)90272-5Search in Google Scholar

[2] H. Hofmeister, P. Ködderitzsch, J. Dutta, J. Non-Cryst. Solids 232–234, 182 (1998) http://dx.doi.org/10.1016/S0022-3093(98)00382-210.1016/S0022-3093(98)00382-2Search in Google Scholar

[3] J. Żurawska, A. Krysztafkiewicz, T. Jesionowski, J. Chem. Technol. Biot. 78, 534 (2003) http://dx.doi.org/10.1002/jctb.82610.1002/jctb.826Search in Google Scholar

[4] T. Jesionowski, Mater. Chem. Phys. 113, 839 (2009) http://dx.doi.org/10.1016/j.matchemphys.2008.08.06710.1016/j.matchemphys.2008.08.067Search in Google Scholar

[5] T. Jesionowski, F. Ciesielczyk, A. Krysztafkiewicz, Mater. Chem. Phys. 119, 65 (2010) http://dx.doi.org/10.1016/j.matchemphys.2009.07.03410.1016/j.matchemphys.2009.07.034Search in Google Scholar

[6] K. Quarch, E. Durand, C. Schilde, A. Kwade, M. Kind, Chem. Eng. Res. Des. 88, 1639 (2010) http://dx.doi.org/10.1016/j.cherd.2010.01.00710.1016/j.cherd.2010.01.007Search in Google Scholar

[7] R.K. Iler, Chemistry of Silica — Soulibility, Polimerization, Colloid and Surface Properties and Biochemistry. John Wiley & Sons, New Jersey (1979) Search in Google Scholar

[8] J.H. Lora, W.G. Glasser, J. Polym. Environ. 10, 39 (2002) http://dx.doi.org/10.1023/A:102107000689510.1023/A:1021070006895Search in Google Scholar

[9] J. Zakzeski, P.C. Bruijnincx, A.L. Jongerius, B.M. Weckhuysen, Chem. Rev. 110, 3552 (2010) http://dx.doi.org/10.1021/cr900354u10.1021/cr900354uSearch in Google Scholar PubMed

[10] J.J. Meister, J. Macromol. Sci.-Pol. R. 42, 235 (2002) http://dx.doi.org/10.1081/MC-12000476410.1081/MC-120004764Search in Google Scholar

[11] R. Zhong, Z.H. Ye, Plant Signal. Behav. 11, 1028 (2009) http://dx.doi.org/10.4161/psb.4.11.987510.4161/psb.4.11.9875Search in Google Scholar PubMed PubMed Central

[12] N.D. Bonawitz, C. Chapple, Annu. Rev. Genet. 44, 337 (2010) http://dx.doi.org/10.1146/annurev-genet-102209-16350810.1146/annurev-genet-102209-163508Search in Google Scholar

[13] D.W.S. Wong, Appl. Biochem. Biotech. 157, 174 (2009) http://dx.doi.org/10.1007/s12010-008-8279-z10.1007/s12010-008-8279-zSearch in Google Scholar

[14] S.K. Srivastava, A.K. Singh, A. Sharma, Environ. Technol. 15, 353 (1994) http://dx.doi.org/10.1080/0959333940938543810.1080/09593339409385438Search in Google Scholar

[15] S. Babel, T.A. Kurniawan, J. Hazard. Mater. 97, 219 (2003) http://dx.doi.org/10.1016/S0304-3894(02)00263-710.1016/S0304-3894(02)00263-7Search in Google Scholar

[16] D. Mohan, C.U. Pittman, P.H. Steele, J. Colloid Interface Sci. 297, 489 (2006) http://dx.doi.org/10.1016/j.jcis.2005.11.02310.1016/j.jcis.2005.11.023Search in Google Scholar PubMed

[17] E. Masai, Y. Katayama, M. Fukuda, Biosci. Biotech. Biochem. 71, 1 (2007) http://dx.doi.org/10.1271/bbb.6043710.1271/bbb.60437Search in Google Scholar PubMed

[18] M. Ahmad, C.R. Taylor, D. Pink, K. Burton, D. Eastwood, G.D. Bending, T.D. Bugg, Mol. Biosyst. 6, 815 (2010) http://dx.doi.org/10.1039/b908966g10.1039/b908966gSearch in Google Scholar PubMed

[19] Y. Qu, Y. Tian, B. Zou, J. Zhang, Y. Zheng, L. Wang, Y. Li, C. Rong, Z. Wang, Bioresource Technol. 101, 8402 (2010) http://dx.doi.org/10.1016/j.biortech.2010.05.06710.1016/j.biortech.2010.05.067Search in Google Scholar PubMed

[20] Ł. Klapiszewski, M. Mądrawska, T. Jesionowski, Physicochem. Probl. Miner. Process. 48, 463 (2012) Search in Google Scholar

[21] Ł. Klapiszewski, M. Nowacka, G. Milczarek, T. Jesionowski, Carbohydr. Polym. 94, 345 (2013) http://dx.doi.org/10.1016/j.carbpol.2013.01.05810.1016/j.carbpol.2013.01.058Search in Google Scholar PubMed

[22] G. Milczarek, O. Inganäs, Science 335, 1468 (2012) http://dx.doi.org/10.1126/science.121515910.1126/science.1215159Search in Google Scholar PubMed

[23] T.Q. Hu, Chemical Modification, Properties and Usage of Lignin. Springer, New York (2002) http://dx.doi.org/10.1007/978-1-4615-0643-010.1007/978-1-4615-0643-0Search in Google Scholar

[24] H.G. Jung, D.R. Mertens, A.J. Payne, J. Dairy Sci. 80, 1622 (1997) http://dx.doi.org/10.3168/jds.S0022-0302(97)76093-410.3168/jds.S0022-0302(97)76093-4Search in Google Scholar

[25] A. Zhang, F. Lu, R.C. Sun, J. Ralph, J. Agr. Food Chem. 58, 3446 (2010) http://dx.doi.org/10.1021/jf903998d10.1021/jf903998dSearch in Google Scholar

[26] F.E. Brauns, J. Am. Chem. Soc. 61, 2120 (1939) http://dx.doi.org/10.1021/ja01877a04310.1021/ja01877a043Search in Google Scholar

[27] C. Crestini, F. Melone, M. Sette, R. Saladino, Biomacromolecules 12, 3928 (2011) http://dx.doi.org/10.1021/bm200948r10.1021/bm200948rSearch in Google Scholar

[28] L. Kouisni, Y. Fang, M. Paleologou, B. Ahvazi, J. Hawari, Y. Zhang, X.M. Wang, Cell. Chem. Technol. 45, 515 (2011) Search in Google Scholar

[29] A. Vishtal, A. Kraslawski, Bioresources 6, 3547 (2011) 10.15376/biores.6.3.vishtalSearch in Google Scholar

[30] A.S. Jönsson, A.K. Nordin, O. Wallberg, Chem. Eng. Res. Des. 86, 1271 (2008) http://dx.doi.org/10.1016/j.cherd.2008.06.00310.1016/j.cherd.2008.06.003Search in Google Scholar

[31] J.H. Clark, Green Chem. 8, 17 (2006) http://dx.doi.org/10.1039/b516637n10.1039/B516637NSearch in Google Scholar

[32] T. Jesionowski, A. Krysztafkiewicz, J. Non-Cryst. Solids 277, 45 (2000) http://dx.doi.org/10.1016/S0022-3093(00)00299-410.1016/S0022-3093(00)00299-4Search in Google Scholar

[33] M. Lazghab, K. Saleh, P. Guigon, Chem. Eng. Res. Des. 88, 686 (2010) http://dx.doi.org/10.1016/j.cherd.2009.11.00510.1016/j.cherd.2009.11.005Search in Google Scholar

[34] M. Szekeres, I. Dékány, A. De Keizer, Colloids Surf. A 141, 327 (1998) http://dx.doi.org/10.1016/S0927-7757(97)00116-710.1016/S0927-7757(97)00116-7Search in Google Scholar

[35] M. Kosmulski, Surface Charging and Points of Zero Charge (CRC Press, New York, 2009) http://dx.doi.org/10.1201/978142005189610.1201/9781420051896Search in Google Scholar

[36] K. Rodríguez, M. Araujo, J. Colloid Interface Sci. 300, 788 (2006) http://dx.doi.org/10.1016/j.jcis.2006.04.03010.1016/j.jcis.2006.04.030Search in Google Scholar

[37] E. Rosenbrand, I. Lykke Fabricius, H. Yuan, Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford, California (2012) Search in Google Scholar

[38] A. Tejado, C. Peňa, J. Labidi, J.M. Echeverria, I. Mondragon, Bioresource Technol. 98, 1655 (2007) http://dx.doi.org/10.1016/j.biortech.2006.05.04210.1016/j.biortech.2006.05.042Search in Google Scholar

[39] M. González Alriols, A. Garcia, Llano-ponte, J. Labidi, Chem. Eng. J. 157, 113 (2010) http://dx.doi.org/10.1016/j.cej.2009.10.05810.1016/j.cej.2009.10.058Search in Google Scholar

[40] J. Rodríguez-Mirasol, T. Cordero, J.J. Rodríguez, Carbon 31, 53 (1993) http://dx.doi.org/10.1016/0008-6223(93)90155-410.1016/0008-6223(93)90155-4Search in Google Scholar

[41] T.X. Fan, T. Hirose, T. Okabe, D. Zhang, R. Teranishi, M. Yoshimura, J. Porous Mat. 9, 35 (2002) http://dx.doi.org/10.1023/A:101439962125310.1023/A:1014399621253Search in Google Scholar

[42] M. Kijima, T. Hirukawa, F. Hanawa, T. Hata, Bioresource Technol. 102, 6279 (2011) http://dx.doi.org/10.1016/j.biortech.2011.03.02310.1016/j.biortech.2011.03.023Search in Google Scholar PubMed

Published Online: 2013-11-27
Published in Print: 2014-2-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11532-013-0370-9/html
Scroll to top button