Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 22, 2013

An adaptive finite element method for Fredholm integral equations of the first kind and its verification on experimental data

  • Nikolay Koshev EMAIL logo and Larisa Beilina
From the journal Open Mathematics

Abstract

We propose an adaptive finite element method for the solution of a linear Fredholm integral equation of the first kind. We derive a posteriori error estimates in the functional to be minimized and in the regularized solution to this functional, and formulate corresponding adaptive algorithms. To do this we specify nonlinear results obtained earlier for the case of a linear bounded operator. Numerical experiments justify the efficiency of our a posteriori estimates applied both to the computationally simulated and experimental backscattered data measured in microtomography.

[1] Asadzadeh M., Eriksson K., On adaptive finite element methods for Fredholm integral equations of the second kind, SIAM J. Numer. Anal., 1994, 31(3), 831–855 http://dx.doi.org/10.1137/073104510.1137/0731045Search in Google Scholar

[2] Atkinson K.E., The numerical solution of integral equations of the second kind, Cambridge Monogr. Appl. Comput. Math., 4, Cambridge University Press, Cambridge, 1997 Search in Google Scholar

[3] Bakushinsky A.B., A posteriori error estimates for approximate solutions of irregular operator equations, Dokl. Math., 2011, 83(2), 192–193 http://dx.doi.org/10.1134/S106456241102019010.1134/S1064562411020190Search in Google Scholar

[4] Bakushinsky A.B., Kokurin M.Yu., Smirnova A., Iterative Methods for Ill-Posed Problems, Inverse Ill-Posed Probl. Ser., 54, Walter de Gruyter, Berlin, 2011 10.1515/9783110250657Search in Google Scholar

[5] Basistov Yu.A., Goncharsky A.V., Lekht E.E., Cherepashchuk A.M., Yagola A.G., Application of the regularization method for increasing of the radiotelescope resolution power, Astronomicheskii Zhurnal, 1979, 56(2), 443–449 (in Russian) Search in Google Scholar

[6] Beilina L., Klibanov M.V., A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem, Inverse Problems, 2010, 26(4), #045012 http://dx.doi.org/10.1088/0266-5611/26/4/04501210.1088/0266-5611/26/4/045012Search in Google Scholar

[7] Beilina L., Klibanov M.V., Reconstruction of dielectrics from experimental data via a hybrid globally convergent/adaptive inverse algorithm, Inverse Problems, 2010, 26(12), #125009 http://dx.doi.org/10.1088/0266-5611/26/12/12500910.1088/0266-5611/26/12/125009Search in Google Scholar

[8] Beilina L., Klibanov M.V., Kokurin M.Yu., Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem, J. Math. Sci. (N.Y.), 2010, 167(3), 279–325 http://dx.doi.org/10.1007/s10958-010-9921-110.1007/s10958-010-9921-1Search in Google Scholar

[9] Beilina L., Klibanov M.V., Kuzhuget A., New a posteriori error estimates for adaptivity technique and global convergence for the hyperbolic coefficient inverse problem, J. Math. Sci. (N.Y.), 2011, 172(4), 449–476 http://dx.doi.org/10.1007/s10958-011-0203-310.1007/s10958-011-0203-3Search in Google Scholar

[10] Bolotina A.V., Luk’yanov F.A., Rau E.I., Sennov R.A., Yagola A.G., Energy spectra of electrons backscattered from bulk solid targets, Moscow University Physics Bulletin, 2009, 64(5), 503–506 http://dx.doi.org/10.3103/S002713490905007510.3103/S0027134909050075Search in Google Scholar

[11] Eriksson K., Estep D., Johnson C., Applied Mathematics: Body and Soul, 3, Springer, Berlin, 2004 http://dx.doi.org/10.1007/978-3-662-05796-410.1007/978-3-662-05796-4Search in Google Scholar

[12] Goncharsky A.V., Cherepashchuk A.M., Yagola A.G., Ill-Posed Problems of Astrophysics, Moscow, Nauka, 1985 (in Russian) Search in Google Scholar

[13] Groetsch C.W., Inverse Problems in the Mathematical Sciences, Vieweg Math. Sci. Engrs., Friedr. Vieweg & Sohn, Braunschweig, 1993 Search in Google Scholar

[14] Johnson C., Numerical Solution of Partial Differential Equations by the Finite Element Method, Dover, Mineola, 2009 Search in Google Scholar

[15] Johnson C., Szepessy A., Adaptive finite element methods for conservation laws based on a posteriori error estimates, Comm. Pure Appl. Math., 1995, 48(3), 199–234 http://dx.doi.org/10.1002/cpa.316048030210.1002/cpa.3160480302Search in Google Scholar

[16] Klibanov M.V., Bakushinsky A.B., Beilina L., Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess, J. Inverse Ill-Posed Probl., 2011, 19(1), 83–105 http://dx.doi.org/10.1515/jiip.2011.02410.1515/jiip.2011.024Search in Google Scholar

[17] Koshev N.A., Luk’yanov F.A., Rau E.I., Sennov R.A., Yagola A.G., Increasing spatial resolution in the backscattered electron mode of scanning electron microscopy, Bulletin of the Russian Academy of Sciences: Physics, 2011, 75(9), 1181–1184 http://dx.doi.org/10.3103/S106287381109013910.3103/S1062873811090139Search in Google Scholar

[18] Koshev N.A., Orlikovsky N.A., Rau E.I., Yagola A.G., Solution of the inverse problem of restoring the signals from an electronic microscope in the backscattered electron mode on the class of bounded variation functions, Numerical Methods and Programming, 2011, 12, 362–367 (in Russian) Search in Google Scholar

[19] Kress R., Linear Integral Equations, Appl. Math. Sci., 82, Springer, Berlin, 1989 10.1007/978-3-642-97146-4_7Search in Google Scholar

[20] Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Kochikov I.V., Ill-posed problems of image processing, Soviet Phys. Dokl., 1987, 32(6), 456–458 Search in Google Scholar

[21] Tikhonov A.N., Goncharsky A.V., Stepanov V.V., Yagola A.G., Numerical Methods for the Solution of Ill-Posed Problems, Math. Appl., 328, Kluwer, Dordrecht, 1995 10.1007/978-94-015-8480-7Search in Google Scholar

[22] Tikhonov A.N., Leonov A.S., Yagola A.G., Nonlinear Ill-Posed Problems, Appl. Math. Math. Comput., 14, Chapman & Hall, London, 1998 10.1007/978-94-017-5167-4Search in Google Scholar

[23] Yagola A.G., Koshev N.A., Restoration of smeared and defocused color images, Numerical Methods and Programming, 2008, 9, 207–212 (in Russian) Search in Google Scholar

Published Online: 2013-5-22
Published in Print: 2013-8-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-013-0247-3/html
Scroll to top button