Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 19, 2013

Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term

  • Fawang Liu EMAIL logo , Shiping Chen , Ian Turner , Kevin Burrage and Vo Anh
From the journal Open Physics

Abstract

Fractional differential equations have attracted considerable interest because of their ability to model anomalous transport phenomena. Space fractional diffusion equations with a nonlinear reaction term have been presented and used to model many problems of practical interest. In this paper, a two-dimensional Riesz space fractional diffusion equation with a nonlinear reaction term (2D-RSFDE-NRT) is considered. A novel alternating direction implicit method for the 2D-RSFDE-NRT with homogeneous Dirichlet boundary conditions is proposed. The stability and convergence of the alternating direction implicit method are discussed. These numerical techniques are used for simulating a two-dimensional Riesz space fractional Fitzhugh-Nagumo model. Finally, a numerical example of a two-dimensional Riesz space fractional diffusion equation with an exact solution is given. The numerical results demonstrate the effectiveness of the methods. These methods and techniques can be extended in a straightforward method to three spatial dimensions, which will be the topic of our future research.

[1] L. M. Pismen, Patterns and Interfaces in Dissipative Systems (Springer Verlag, Berlin, 2006) 163–169 Search in Google Scholar

[2] S. B. Yuste, K. Lindenberg, Phys. Rev. Lett. 87, 118301 (2001) http://dx.doi.org/10.1103/PhysRevLett.87.11830110.1103/PhysRevLett.87.118301Search in Google Scholar

[3] S. B. Yuste, L. Acedo, K. Lindenberg, Phys. Rev. E 69, 036126 (2004) http://dx.doi.org/10.1103/PhysRevE.69.03612610.1103/PhysRevE.69.036126Search in Google Scholar

[4] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-310.1016/S0370-1573(00)00070-3Search in Google Scholar

[5] S. Picozzi, B. West, Phys. Rev. E 66, 046118 (2002) http://dx.doi.org/10.1103/PhysRevE.66.04611810.1103/PhysRevE.66.046118Search in Google Scholar

[6] F. Liu, V. Anh, I. Turner, J. Comp. Appl. Math. 166, 209 (2004) http://dx.doi.org/10.1016/j.cam.2003.09.02810.1016/j.cam.2003.09.028Search in Google Scholar

[7] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Appl. Math. Comp. 191, 12 (2007) http://dx.doi.org/10.1016/j.amc.2006.08.16210.1016/j.amc.2006.08.162Search in Google Scholar

[8] I. Podlubny, Fractional Differential Equations (Academic Press, London and New York, 1999) Search in Google Scholar

[9] D. Baleanu, Rep. Math. Phys. 61, 199 (2008) http://dx.doi.org/10.1016/S0034-4877(08)80007-910.1016/S0034-4877(08)80007-9Search in Google Scholar

[10] E. M. Rabei, I. M. Rawashdeh, S. Muslih, D. Baleanu, Int. J. Theor. Phys. 50, 1569 (2011) http://dx.doi.org/10.1007/s10773-011-0668-310.1007/s10773-011-0668-3Search in Google Scholar

[11] F. Jarad, T. Abdeljawad, D. Baleanu, Abstr. App. Anal. 2012, 8903976 (2012) 10.1186/1687-1847-2012-142Search in Google Scholar

[12] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Com plexity, Nonlinearity and Chaos (World Scientific, Singapore, 2012) 10.1142/8180Search in Google Scholar

[13] J. A. Ochoa-Tapia, F. J. Valdes-Parada, J. Alvarez-Ramirez, Physica A 374, 1 (2007) http://dx.doi.org/10.1016/j.physa.2006.07.03310.1016/j.physa.2006.07.033Search in Google Scholar

[14] F. J. Valdes-Parada, J. A. Ochoa-Tapia, J. Alvarez-Ramirez, Physica A 373, 339 (2007) http://dx.doi.org/10.1016/j.physa.2006.06.00710.1016/j.physa.2006.06.007Search in Google Scholar

[15] J. H. Cushman, B. X. Hu, T. R. Ginn, J. Stat. Phy. 75, 859 (1994) http://dx.doi.org/10.1007/BF0218674710.1007/BF02186747Search in Google Scholar

[16] D. Del-Castillo-Negrete, Phys. Rev. E 79, 031120 (2009) http://dx.doi.org/10.1103/PhysRevE.79.03112010.1103/PhysRevE.79.031120Search in Google Scholar

[17] V. B. L. Chaurasia, J. Singh, Appl. Math. Sci. 60, 2989 (2011) Search in Google Scholar

[18] R. Gorenflo, F. Mainardi, Fractional Calc. App. Anal. 1, 167 (1998) Search in Google Scholar

[19] M. M. Meerschaert, H. P. Scheffler, C. Tadjeran, J. Comput. Phys. 211, 249 (2006) http://dx.doi.org/10.1016/j.jcp.2005.05.01710.1016/j.jcp.2005.05.017Search in Google Scholar

[20] R. FitzHugh, Biophys. J. 1, 445 (1961) http://dx.doi.org/10.1016/S0006-3495(61)86902-610.1016/S0006-3495(61)86902-6Search in Google Scholar

[21] J. Nagumo, S. Animoto, S. Yoshizawa, Proc. Inst. Radio Eng. 50, 2061 (1962) 10.1109/JRPROC.1962.288235Search in Google Scholar

[22] A. Bueno-Orovio, D. Kay, K. Burrage, J. Comp. Phys. (in press) Search in Google Scholar

[23] Y. Zhang, D. A. Benson, D. M. Reeves, Adv. Water Resour. 32, 561 (2009) http://dx.doi.org/10.1016/j.advwatres.2009.01.00810.1016/j.advwatres.2009.01.008Search in Google Scholar

[24] S. Chen, F. Liu, I. Turner, V. Anh, App. Math. Comput. 219, 4322 (2013) http://dx.doi.org/10.1016/j.amc.2012.10.00310.1016/j.amc.2012.10.003Search in Google Scholar

[25] Q. Yu, F. Liu, I. Turner, K. Burrage, Appl. Math. Comp. 219, 4082 (2013) http://dx.doi.org/10.1016/j.amc.2012.10.05610.1016/j.amc.2012.10.056Search in Google Scholar

Published Online: 2013-12-19
Published in Print: 2013-10-1

© 2013 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-013-0296-z/html
Scroll to top button