Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 21, 2014

Two dimensional fractional projectile motion in a resisting medium

  • Juan Rosales EMAIL logo , Manuel Guía , Francisco Gómez , Flor Aguilar and Juan Martínez
From the journal Open Physics

Abstract

In this paper we propose a fractional differential equation describing the behavior of a two dimensional projectile in a resisting medium. In order to maintain the dimensionality of the physical quantities in the system, an auxiliary parameter k was introduced in the derivative operator. This parameter has a dimension of inverse of seconds (sec)−1 and characterizes the existence of fractional time components in the given system. It will be shown that the trajectories of the projectile at different values of γ and different fixed values of velocity v 0 and angle θ, in the fractional approach, are always less than the classical one, unlike the results obtained in other studies. All the results obtained in the ordinary case may be obtained from the fractional case when γ = 1.

[1] K. Oldham, J. Spanier, The Fractional Calculus, (Academic Press, New York, 1974) Search in Google Scholar

[2] I. Podlubny, Fractional Differential Equations, (Academic Press, New York, 1999) Search in Google Scholar

[3] R. Hilfer, Applications of Fractional Calculus in Physics, (World Scientific, Singapore, 2000) http://dx.doi.org/10.1142/978981281774710.1142/3779Search in Google Scholar

[4] S. G. Samko, A. A. Kilbas, O. I. Maritchev, Fractional Integrals and Derivatives, Theory and Applications, (Gordon and Breach Science Publishers, Langhorne, PA, 1993) Search in Google Scholar

[5] M. Caputo, F. Mainardi, Pure Appl. Geophys. 91, 8 (1971) http://dx.doi.org/10.1007/BF0087956210.1007/BF00879562Search in Google Scholar

[6] S. Westerlund. Causality, report no. 940426, University of Kalmar, (1994) Search in Google Scholar

[7] R.R. Nigmatullin, A.A. Arbuzov, F. Salehli, A. Giz, I. Bayrak, H. Catalgil-Giz, Physica. B388 (2007) 10.1016/j.physb.2006.06.153Search in Google Scholar

[8] R.L. Magin, O. Abdullah, D. Baleanu, X. Joe Zhou, Journal of Magnetic Resonance, 190 (2008) 10.1016/j.jmr.2007.11.007Search in Google Scholar PubMed

[9] V. Uchaikin, Fractional Derivatives for Physicists and Engineers, (Springer, 2013) http://dx.doi.org/10.1007/978-3-642-33911-010.1007/978-3-642-33911-0Search in Google Scholar

[10] R.L. Magin, Fractional Calculus in Bioengineering, (Redding, CT: Begell House, 2006) Search in Google Scholar

[11] C. M. Ionescu, R. De Keyser, IEEE Tans. Biomed. Eng. 56, 4 (2009) http://dx.doi.org/10.1109/TBME.2009.203719910.1109/TBME.2009.2037199Search in Google Scholar

[12] R. Martin, J. J. Quintana, A. Ramos, L. De la Nuez, Proc. IEEE Conf. Electroche. (2008) Search in Google Scholar

[13] I. S. Jesus, T. J. A. Machado, B. J. Cunha, J. Vibrations Control. 14, 9 (2008) 10.1177/1077546307087442Search in Google Scholar

[14] D. Baleanu, Alireza K. Golmankhaneh, R. Nigmatullin, Ali K. Golmankhaneh, Cent. Eur. J. Phys. 8, 120 (2010) http://dx.doi.org/10.2478/s11534-009-0085-x10.2478/s11534-009-0085-xSearch in Google Scholar

[15] A.K. Golmankhaneh, A.M. Yengejeh, D. Baleanu, Int. J. Theor. Phys. 51, 2909 (2012) http://dx.doi.org/10.1007/s10773-012-1169-810.1007/s10773-012-1169-8Search in Google Scholar

[16] V. Kulish, L. L. José, Journal of Fluids Engineering 124, Article ID (2002) 10.1115/1.1478062Search in Google Scholar

[17] Baleanu D., Günvenc Z.B., Tenreiro Machado J.A. New Trends in Nanotechnology and Fractional Calculus Applications, (Springer, 2010) http://dx.doi.org/10.1007/978-90-481-3293-510.1007/978-90-481-3293-5Search in Google Scholar

[18] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo. Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, (World Scientific, 2012) 10.1142/8180Search in Google Scholar

[19] K. Diethelm. The Analysis of Fractional Differential Equations, (Springer-Verlag Berlin Heidelber, 2010) http://dx.doi.org/10.1007/978-3-642-14574-210.1007/978-3-642-14574-2Search in Google Scholar

[20] Alireza, K. Golmankhaneh. Investigations in Dynamics: With Focus on Fractional Dynamics. (LAP Lambert, Academic Publishing, Germany, 2012) Search in Google Scholar

[21] S. F. Kwok, Physica A 350, (2005) Search in Google Scholar

[22] E. Abdelhalim, Applied Mathematical Modeling 35, (2011) Search in Google Scholar

[23] J. F. Gómez-Aguilar, J. J. Rosales-García, J. J. Bernal-Alvarado, T. Córdova-Fraga, R. Guzmán-Cabrera, Rev. Mex. Fís. 58, (2012) Search in Google Scholar

[24] J. J. Rosales, M. Guía, J. F. Gómez, V. I. Tkach, Discontinuity Nonlinearity and Complexity 1, 4 (2012) 10.5890/DNC.2012.09.004Search in Google Scholar

[25] J. Juan Rosales García, M. Guía Calderon, Juan Martínez Ortiz, Dumitru Baleanu, Proceedings of the Romanian Academy, Serie A, 14, 1 (2013) Search in Google Scholar

[26] S.T. Thornton, J.B. Marion. Classical Dynamics of Particles and Systems, (Ed. Thomson Brooks/cole, 2004) Search in Google Scholar

Published Online: 2014-6-21
Published in Print: 2014-7-1

© 2014 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11534-014-0473-8/html
Scroll to top button