Skip to main content

Advertisement

Log in

Double-averaging methodology and its application to turbulent flow in and above vegetation canopies

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Double averaged equations for atmospheric boundary layer flows are introduced as natural extensions of single averaged Reynolds equations. We show that in circumstances where double averaged equations are needed, the two fundamental properties of Reynolds averaging are violated. First, we consider double-averaging in free air turbulence, where the aim is to separate coherent motions from background turbulence. We illustrate the different properties of the main operators that have been used and the physical meaning of the terms that result. Second, in canopy flows, the multiply connected nature of the canopy airspace leads to a different set of departures from the standard Reynolds equations. We establish the physical meaning of the extra terms that arise. Finally we briefly discuss the problems, both practical and theoretical, that arise when we use double averaged equations to interpret real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia, R.A. (1981), Conditional sampling in turbulence measurement, Ann. Rev. Fluid Mech. 13, 131–156.

    Article  Google Scholar 

  • Aubry, N., P. Holmes, J.L. Lumley, and E. Stone (1988), The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech. 192, 115–173.

    Article  Google Scholar 

  • Belcher, S.E., J.J. Finnigan, and I.N. Harman (2008), Flows through forest canopies in complex terrain, Ecological Applications (in press).

  • Bohm, M., J.J. Finnigan, and M.R. Raupach (2000), Dispersive fluxes and canopy flows: just how important are they? Proc. 24th Conference on Agricultural and Forest Meteorology, Amer. Meteor. Soc., Davis, 14–18 August 2000.

    Google Scholar 

  • Bracewell, R. (1965), The Fourier Transform and its Application, McGraw Hill, New York.

    Google Scholar 

  • Brown, K.W., and W. Covey (1966), The energy-budget evaluation of the micro-meteorological transfer processes within a cornfield, Agric. Meteorol. 3, 73–96.

    Article  Google Scholar 

  • Brunet, Y., J.J. Finnigan, and M.R. Raupach (1994), A wind tunnel study of air flow in waving wheat: single-point velocity statistics, Bound.-Layer Meteor. 70, 95–132.

    Article  Google Scholar 

  • Coceal, O., A. Dobre, T.G. Thomas, and S.E. Belcher (2007), Structure of turbulent flow over regular arrays of cubical roughness, J. Fluid Mech. 589, 375–409.

    Article  Google Scholar 

  • Corrsin, S. (1974), Limitations of gradient transport models in random walks and turbulence, Adv. Geophys. 18A, 25–60.

    Google Scholar 

  • Davis, R.E. (1969), On the high Reynolds number flow over a wavy boundary, J. Fluid Mech. 36, 337–346.

    Article  Google Scholar 

  • Einaudi, F., and J.J. Finnigan (1981), The interaction between an internal gravity wave and the planetary boundary layer. Part I: The linear analysis, Quart. J. Roy. Meteor. Soc. 107, 793–806.

    Article  Google Scholar 

  • Einaudi, F., A.J. Bedard Jr., and J.J. Finnigan (1989), A climatology of gravity waves and other coherent disturbances at the Boulder Atmospheric Observatory during March–April 1984, J. Atmos. Sci. 46, 303–329.

    Article  Google Scholar 

  • Finnigan, J.J. (1985), Turbulent transport in flexible plant canopies. In: B.A. Hutchison and B.B Hicks (eds.), The Forest-Atmosphere Interaction, Reidel Publishing Co., Dordrecht, 443–480.

    Google Scholar 

  • Finnigan, J.J. (1988), Kinetic energy transfer between internal gravity waves and turbulence, J. Atmos. Sci. 45, 486–505.

    Article  Google Scholar 

  • Finnigan, J.J. (1998), A note on wave-turbulence interaction and the possibility of scaling the very stable boundary layer, Bound.-Layer Meteor. 90, 529–539.

    Article  Google Scholar 

  • Finnigan, J.J., and F. Einaudi (1981), The interaction between an internal gravity wave and the planetary boundary layer. Part II: Effect of the wave on the turbulence structure, Quart. J. Roy. Meteor. Soc. 107, 807–832.

    Article  Google Scholar 

  • Finnigan, J.J., and R.H. Shaw (2000), A wind tunnel study of airflow in waving wheat: an Empirical Orthogonal Function analysis of the large-eddy motion, Bound.-Layer Meteor. 96, 211–255.

    Article  Google Scholar 

  • Finnigan, J.J., F. Einaudi, and D. Fua (1984), The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer, J. Atmos. Sci. 41, 2409–2436.

    Article  Google Scholar 

  • Fitzmaurice, L., R.H. Shaw, K.T. Paw U, and E.G. Patton (2004), Three-dimensional scalar microfront systems in a large-eddy simulation of vegetation canopy flow, Bound.-Layer Meteor. 112, 107–127.

    Article  Google Scholar 

  • Gao, W., R.H. Shaw, and K.T. Paw U (1989), Observation of organized structure in turbulent flow within and above a forest canopy, Bound.-Layer Meteor. 47, 349–377.

    Article  Google Scholar 

  • Holmes, P., J.L. Lumley, and G. Berkooz (1996), Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge.

    Google Scholar 

  • Howes, F.A., and S. Whitaker (1985), The spatial averaging theorem revisited, Chem. Eng. Sci. 40, 1387–1392.

    Article  Google Scholar 

  • Hunt, J.C.R., and D.J. Carruthers (1990), Rapid distortion theory and the ‘problems’ of turbulence, J. Fluid Mech. 212, 497–532.

    Article  Google Scholar 

  • Kendall, J.M. (1970), The turbulent boundary layer over a wall with progressive surface waves, J. Fluid Mech. 41, 259–281.

    Article  Google Scholar 

  • Launder, B.E. (1990), Phenomenological modelling: present and future? In: J.L. Lumley (ed.) Whither Turbulence? Turbulence at the Crossroads, Springer Verlag, Berlin, 439–485.

    Chapter  Google Scholar 

  • Lemon, E.R., and J.L. Wright (1969), Photosynthesis under field conditions: assessing sources and sinks of carbon dioxide in a corn (Zea Mays L) crop using a momentum balance approach, Agron. J. 61, 405–411.

    Google Scholar 

  • Le Mone, M.A. (1973), The structure and dynamics of horizontal roll vortices in the planetary boundary layer, J. Atmos. Sci. 30, 1077–1091.

    Article  Google Scholar 

  • Leonard, A. (1974), Energy cascade in large-eddy simulations of turbulent fluid flows, Advances in Geophysics. 18A, 237–248.

    Google Scholar 

  • Leslie, D.C. (1973), Developments in the Theory of Turbulence, Oxford University Press, London.

    Google Scholar 

  • Lumley, J.L. (1967), The structure of inhomogeneous turbulent flows. In: A.M. Yaglom and V.I. Tatarsky (eds.), Atmospheric Turbulence and Radio Wave Transmission, Nauka, Moscow, 161–178.

    Google Scholar 

  • Lumley, J.L. (1978), Computational modeling of turbulent flows. In: Advances in Applied Mechanics. Vol. 18 (A79-47538 21-34) Academic Press Inc., New York, 123–176.

    Google Scholar 

  • Moin, P., and R.D. Moser (1989), Characteristic-eddy decomposition of turbulence in a channel, J. Fluid Mech. 200, 471–509.

    Article  Google Scholar 

  • Moncrieff, J.B., R. Clement, J.J. Finnigan, and T. Meyers (2004), Averaging, detrending and filtering of eddy covariance time series. In: X. Lee, W. Massman, and B. Law (eds.), Handbook of Micrometeorology: A Guide for Surface Flux Measurements and Analysis, Kluwer Academic Publishers, Dordrecht, 7–30.

    Google Scholar 

  • Penman, H.L., and I.F. Long (1960), Weather in wheat: an essay in micro-meteorology, Quart. J. Roy. Meteor. Soc. 86, 16–50.

    Article  Google Scholar 

  • Philips, O.N. (1966), The Dynamics of the Upper Ocean, Cambridge University Press, Cambridge.

    Google Scholar 

  • Raupach, M.R., and R.H. Shaw (1982), Averaging procedures for flow within vegetation canopies, Bound.-Layer Meteor. 22, 79–90.

    Article  Google Scholar 

  • Raupach, M.R., P.A. Coppin, and B.J. Legg (1986), Experiments on scalar dispersion within a model plant canopy. Part I: The turbulence structure, Bound.-Layer Meteor. 35, 21–52.

    Article  Google Scholar 

  • Reynolds, O. (1895), On the dynamical theory of incompressible fluids and the determination of the criterion, Phil. Trans. Roy. Soc. Lond. A 186, 123–164.

    Article  Google Scholar 

  • Reynolds, W.C., and A.K.M.F. Hussein (1972), The mechanics of an organised wave in turbulent shear flow. Part 3: Theoretical models and comparisons with experiments, J. Fluid Mech. 54, 263–288.

    Article  Google Scholar 

  • Robinson, S.K. (1991), Coherent motions in the turbulent boundary layer, Ann. Rev. Fluid Mech. 23, 601–639.

    Article  Google Scholar 

  • Shaw, R.H. (1977), Secondary wind speed maxima inside plant canopies, J. Appl. Meteorol. 16, 514–521.

    Article  Google Scholar 

  • Shaw, R.H., and U. Schumann (1992), Large-eddy simulation of turbulent flow above and within a forest, Bound.-Layer Meteor. 61, 47–64.

    Article  Google Scholar 

  • Shaw, R.H., J.J. Finnigan, E.G. Patton, and L. Fitzmaurice (2006), Eddy structure near the plant canopy interface, Proc. 27 th Conference on Agricultural and Forest Meteorology, American Meteorological Society, San Diego, California, May 22–25.

    Google Scholar 

  • Takeuchi, K., E. Leavitt, and S.P. Chao (1977), Effects of water waves on the structure of turbulent shear flow, J. Fluid Mech. 80, 535–559.

    Article  Google Scholar 

  • Thom, A.S. (1972), Momentum, mass and heat exchange of vegetation, Quart. J. Roy. Meteor. Soc. 98, 124–134.

    Article  Google Scholar 

  • Tomkins, C.D., and R.J. Adrian (2003), Spanwise structure and scale growth in turbulent boundary layers, J. Fluid Mech. 490, 37–74.

    Article  Google Scholar 

  • Waggoner, P.E., and W.E. Reifsnyder (1968), Simulation of the temperature, humidity and evaporation profiles in a leaf canopy, J. Appl. Meteorol. 7, 400–409.

    Article  Google Scholar 

  • Wilson, N.R., and R.H. Shaw (1977), A higher order closure model for canopy flow, J. Appl. Meteorol. 16, 1197–1205.

    Article  Google Scholar 

  • Woods, J.D. (1968), Wave induced shear instability in the summer thermocline, J. Fluid Mech. 32, 791–800.

    Article  Google Scholar 

  • Woods, J.D. (1969), On Richardson’s number as a criterion for laminar-turbulent-laminar transition in the ocean and atmosphere, Radio Science 4, 1289–1298.

    Article  Google Scholar 

  • Wyngaard, J.C. (1982), Boundary layer modeling. In: F.T.M. Nieuwstadt and H. van Dop (eds.), Atmospheric Turbulence and Air Pollution Meteorology, Reidel, Dordrecht, 69–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Finnigan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finnigan, J.J., Shaw, R.H. Double-averaging methodology and its application to turbulent flow in and above vegetation canopies. Acta Geophys. 56, 534–561 (2008). https://doi.org/10.2478/s11600-008-0034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-008-0034-x

Key words

Navigation