Skip to main content

Advertisement

Log in

Bias, variance and computational properties of Kijko’s estimators of the upper limit of magnitude distribution, Mmax

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

It is often assumed in probabilistic seismic hazard analysis that the magnitude distribution has an upper limit M max, which indicates a limitation on event size in specific seismogeneic conditions. Accurate estimation of M max from an earthquake catalog is a matter of utmost importance. We compare bias, dispersion and computational properties of four popular M max estimators, introduced by Kijko and others (e.g., Kijko and Sellevoll 1989, Kijko and Graham 1998, Kijko 2004) and we recommend the ones which can be the most fruitful in practical applications. We provide nomograms for evaluation of bias and standard deviation of the recommended estimators for combinations of sample sizes and distribution parameters. We suggest to use the bias nomograms to correct the M max estimates. The nomograms of standard deviation can be used to determine minimum sample size for a required accuracy of M max.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cosentino, P., V. Ficarra, and D. Luzio (1977), Truncated exponential frequencymagnitude relationship in earthquake statistics, Bull. Seismol. Soc. Am. 67,6, 1615–1623.

    Google Scholar 

  • Cooke, P. (1979), Statistical inference for bounds for random variables, Biometrika 66,2, 367–374, DOI: 10.1093/biomet/66.2.367.

    Article  Google Scholar 

  • Davison, F.C., Jr., and C.H. Scholz (1985), Frequency-moment distribution of earthquakes in the Aleutian Arc: A test of the characteristic earthquake model, Bull. Seismol. Soc. Am. 75,5, 1349–1361.

    Google Scholar 

  • Jackson, D.D., and Y.Y. Kagan (1999), Testable earthquake forecasts for 1999, Seismol. Res. Lett. 70, 393–403.

    Article  Google Scholar 

  • Kagan, Y.Y. (1991), Seismic moment distribution, Geophys. J. Int. 106,1, 123–134, DOI: 10.1111/j.1365-246X.1991.tb04606.x.

    Article  Google Scholar 

  • Kijko, A. (1983), A modified form of the first Gumbel distribution: model for the occurrence of large earthquakes. Part II: Estimation of parameters, Acta Geophys. Pol. 31,2, 147–159.

    Google Scholar 

  • Kijko, A. (2004), Estimation of the maximum earthquake magnitude, mmax, Pure Appl. Geophys. 161,8, 1655–1681, DOI: 10.1007/s00024-004-2531-4.

    Article  Google Scholar 

  • Kijko, A., and G. Graham (1998), Parametric-historic procedure for probabilistic seismic hazard analysis. Part I: Estimation of maximum regional magnitude mmax, Pure Appl. Geophys. 152,3, 413–442, DOI: 10.1007/s000240050161.

    Article  Google Scholar 

  • Kijko, A., and M.A. Sellevoll (1989), Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes, Bull. Seismol. Soc. Am. 79,3, 645–654.

    Google Scholar 

  • Kijko, A., S. Lasocki, and G. Graham (2001), Non-parametric seismic hazard in mines, Pure Appl. Geophys. 158,9–10, 1655–1675, DOI: 10.1007/PL00001238.

    Article  Google Scholar 

  • Knopoff, L. (2000), The magnitude distribution of declustered earthquakes in Southern California, Proc. Nat. Acad. Sci. USA 97,22, 11,880–11,884, DOI: 10.1073/pnas.190241297.

    Article  Google Scholar 

  • Knopoff, L., and Y.Y. Kagan (1977), Analysis of the theory of extremes as applied to earthquake problems, J. Geophys. Res. 82,36, 5647–5657, DOI: 10.1029/JB082i036p05647.

    Article  Google Scholar 

  • Lasocki, S. (1993), Weibull distribution as a model for sequences of seismic events induced by mining, Acta Geophys. Pol. 41,2, 101–111.

    Google Scholar 

  • Lasocki S., and E.E. Papadimitriou (2006), Magnitude distribution complexity revealed in seismicity from Greece, J. Geophys. Res. 111, B11309, DOI: 10.1029/2005JB003794.

    Article  Google Scholar 

  • Lasocki, S., A. Kijko, and G. Graham (2002), Model-free seismic hazard analysis. In: H. Ogasawara, T. Yanagidani, and M. Ando (eds.), Seismogenic Process Monitoring, Balkema, Rotterdam, 327–339.

    Google Scholar 

  • Leonard, T., O. Papasouliotis, and I.G. Main (2001), A Poisson model for identifying characteristic size effects in frequency data: Application to frequencysize distributions for global earthquakes, “starquakes”, and fault lengths, J. Geophys. Res. 106,B7, 13,473–13,484, DOI: 10.1029/2000JB900429.

    Article  Google Scholar 

  • Orlecka-Sikora, B., and S. Lasocki (2005), Nonparametric characterization of mining induced seismic sources. In: Y. Potvin, and M. Hudyma (eds.), Proc. Sixth Int. Symp. Rockburst and Seismicity in Mines “Controlling Seismic Risk”, 9–11 March 2005, Australia, Australian Centre for Geomechanics, Nedlands, 555–560.

  • Pacheco, J.F., and L.R. Sykes (1992), Seismic moment catalog of large shallow earthquakes, 1900 to 1989, Bull. Seismol. Soc. Am. 82,3, 1306–1349.

    Google Scholar 

  • Page, R. (1968), Aftershocks and microaftershocks of the great Alaska earthquake of 1964, Bull. Seismol. Soc. Am. 58,3, 1131–1168.

    Google Scholar 

  • Pisarenko, V.F., and D. Sornette (2003), Characterization of the frequency of extreme earthquake events by the generalized pareto distribution, Pure Appl. Geophys. 160,12, 2343–2364, DOI: 10.1007/s00024-003-2397-x.

    Article  Google Scholar 

  • Silverman, B.W. (1986), Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, No. 26, Chapman and Hall, London.

    Google Scholar 

  • Stirling, M.W., S.G. Wesnousky, and K. Shimazaki (1996), Fault trace complexity, cumulative slip, and the shape of the magnitude-frequency distribution for strike-slip faults: a global survey, Geophys. J. Int. 124,3, 833–868, DOI: 10.1111/j.1365-246X.1996.tb05641.x.

    Article  Google Scholar 

  • Wesnousky, S.G., C.H. Scholz, K. Shimazaki, and T. Matsuda (1983), Earthquake frequency distribution and the mechanics of faulting, J. Geophys. Res. 88,B11, 9331–9340, DOI: 10.1029/JB088iB11p09331.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Urban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasocki, S., Urban, P. Bias, variance and computational properties of Kijko’s estimators of the upper limit of magnitude distribution, Mmax . Acta Geophys. 59, 659–673 (2011). https://doi.org/10.2478/s11600-010-0049-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-010-0049-y

Key words

Navigation