Skip to main content
Log in

Rupture of an evaporating liquid bridge between two grains

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The study examines rupture of evaporating liquid bridges between two glass spheres. Evolution of the bridge profile has been recorded with the use of high-speed camera. Geometrical characteristics of the bridge were then used to calculate evolution of the variables during the process: Laplace pressure, capillary force, and surface tension force. For the purpose of reference, the bridge evolution is followed also during kinematic extension. During both processes the diameter of the neck decreases, with an acceleration of about 1–2 ms before the rupture. Two distinct rupture modes are observed, depending on the bridge aspect ratio. After the rupture, the mass of liquid splits, forming two separate oscillating drops attached to the spheres, and a suspended satellite droplet. Just before the rupture, an increasing repulsive Laplace pressure, and decreasing negative surface tension force develop. Capillary force follows the trend of the surface tension force, with an accelerating decline. Duration of the whole process and liquid mass stabilization is from 10 to 60 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernoff, A.J., A.L. Bertozzi, and T.P. Witelski (1998), Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff, J. Stat. Phys. 93,3–4, 725–776, DOI: 10.1023/B:JOSS.0000033251.81126.af.

    Article  Google Scholar 

  • Bièvre, G., D. Jongmans, T. Winiarski, and V. Zumbo (2012), Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps), Hydrol. Process. 26,14, 2128–2142, DOI: 10.1002/hyp.7986.

    Article  Google Scholar 

  • Brenner, M.P., X.D. Shi, and S.R. Nagel (1994), Iterated instabilities during droplet fission, Phys. Rev. Lett. 73,25, 3391–3396, DOI: 10.1103/PhysRevLett.73.3391.

    Article  Google Scholar 

  • Bush, J.W.M. (2004), MIT Lecture Notes on Surface Tension, Sect. 5, Massachusetts Institute of Technology, Cambridge, pdf.

    Google Scholar 

  • Butt, H.-J., and M. Kappl (2009), Normal capillary forces, Adv. Coll. Interf. Sci. 146,1–2, 48–60, DOI 10.1016/j.cis.2008.10.002.

    Article  Google Scholar 

  • De Bisschop, F.R.E., and W.J.L. Rigole (1982), A physical model for liquid capillary bridges between adsorptive solid spheres: The nodoid of plateau, J. Coll. Interf. Sci. 88,1, 117–128, DOI: 10.1016/0021-9797(82)90161-8.

    Article  Google Scholar 

  • de Boer, P.C.T., and M.P. de Boer (2008), Rupture work of pendular bridges, Langmuir 24,1, 160–169, DOI: 10.1021/la701253u.

    Article  Google Scholar 

  • Dixon, D., N. Chandler, J. Graham, and M.N. Gray (2002), Two large-scale sealing tests conducted at Atomic Energy of Canada’s underground research laboratory: the buffer-container experiment and the isothermal test, Can. Geotech. J. 39,3, 503–518, DOI: 10.1139/t02-012.

    Article  Google Scholar 

  • Edgerton, H.E., E.A. Hauser, and W.B. Tucker (1937), Studies in drop formation as revealed by the high-speed motion camera, J. Phys. Chem. 41,7, 1017–1028, DOI: 10.1021/j150385a012.

    Google Scholar 

  • Eggers, J. (1997), Nonlinear dynamics and breakup of free-surface flows, Rev. Mod. Phys. 69,3, 865–929, DOI: 10.1103/RevModPhys.69.865.

    Article  Google Scholar 

  • Erle, M.A., D.C. Dyson, and N.R. Morrow (1971), Liquid bridges between cylinders, in a torus, and between spheres, AIChE J. 17,1, 115–121, DOI: 10.1002/aic.690170125.

    Article  Google Scholar 

  • Fisher, R.A. (1926), On the capillarity forces in an ideal soil; correction of formulae given by W.B. Haines, J. Agric. Sci. 16,3, 492–505, DOI 10.1017/S0021859600007838.

    Article  Google Scholar 

  • Gili, J.A., and E.E. Alonso (2002), Microstructural deformation mechanisms of unsaturated granular soils, Int. J. Numer. Anal. Meth. Geomech. 26,5, 433–468, DOI: 10.1002/nag.206.

    Article  Google Scholar 

  • Gras, J.-P., J.-Y. Delenne, and M.S. El Youssoufi (2013), Study of capillary interaction between two grains: a new experimental device with suction control, Granul. Matter 15,1, 49–56, DOI: 10.1007/s10035-012-0388-2.

    Article  Google Scholar 

  • Haines, W.B. (1925), Studies in the physical properties of soils: II. A note on the cohesion developed by capillary forces in an ideal soil, J. Agric. Sci. 15,4, 529–535, DOI 10.1017/S0021859600082460.

    Article  Google Scholar 

  • Hoek, E., and J.W. Bray (1981), Rock Slope Engineering, 3rd ed., CRC Press, London.

    Google Scholar 

  • Hu, L.B., H. Péron, T. Hueckel, and L. Laloui (2007), Drying shrinkage of deformable porous media: mechanisms induced by the fluid removal. In: T.C. Siegel et al. (eds.), Proc. GeoDenver 2007 “Computer Applications in Geotechnical Engineering”, 18-21 February 2007, Denver, USA, GSP No. 157, DOI: 10.1061/40901(220)17.

    Google Scholar 

  • Hu, L.B., H. Peron, L. Laloui, and T. Hueckel (2011), A multi-scale multi-physics model of soil drying. In: Proc. Geo-Frontiers 2011 “Advances in Geotechnical Engineering”, 13–16 March 2011, Dallas, USA, ASCE GSP No. 211, 4349–4358, DOI: 10.1061/41165(397)445.

    Google Scholar 

  • Hu, L.B., H. Péron, T. Hueckel, and L. Laloui (2013a), Desiccation shrinkage of non-clayey soils: multiphysics mechanisms and a microstructural model, Int. J. Numer. Anal. Meth. Geomech. 37,12, 1761–1781, DOI: 10.1002/nag.2108.

    Article  Google Scholar 

  • Hu, L.B., H. Péron, T. Hueckel, and L. Laloui (2013b), Desiccation shrinkage of non-clayey soils: a numerical study, Int. J. Numer. Anal. Meth. Geomech. 37,12, 1782–1800, DOI: 10.1002/nag.2107.

    Article  Google Scholar 

  • Hueckel, T., B. Mielniczuk, and M.S. El Youssoufi (2013), Micro-scale study of rupture in desiccating granular media. In: C. Meehan et al. (eds.), Proc. Geo-Congress 2013 “Stability and Performance of Slopes and Embankments III”, 3–7 March 2013, San Diego, USA, ASCE GSP No. 231, 808–817, DOI: 10.1061/9780784412787.082.

    Google Scholar 

  • Hueckel, T., B. Mielniczuk, M.S. El Youssoufi, L.B. Hu, and L. Laloui (2014), A three-scale cracking criterion for drying soils, Acta Geophys. 62,5, 1049–1059, DOI: 10.2478/s11600-014-0214-9 (this issue).

    Article  Google Scholar 

  • Kowalski, S.J., and B. Mielniczuk (2007), Analysis of effectiveness and stress development during convective and microwave drying, Dry. Technol. 26,1, 64–77, DOI: 10.1080//07373930701781637.

    Article  Google Scholar 

  • Leppinen, D., and J.R. Lister (2003), Capillary pinch-off in inviscid fluids, Phys. Fluids 15,2, 568–578, DOI: 10.1063/1.1537237.

    Article  Google Scholar 

  • Lian, G., C. Thornton, and M.J. Adams (1993), A theoretical study of the liquid bridge forces between two rigid spherical bodies, J. Colloid Interf. Sci. 161,1, 138–147, DOI 10.1006/jcis.1993.1452.

    Article  Google Scholar 

  • Lowry, B.J., and P.H. Steen (1995), Flow-influenced stabilization of liquid columns, J. Colloid Interf. Sci. 170,1, 38–43, DOI 10.1006/jcis.1995.1068.

    Article  Google Scholar 

  • Mason, G., and W.C. Clark (1965), Liquid bridges between spheres, Chem. Eng. Sci. 20,10, 859–866, DOI: 10.1016/0009-2509(65)80082-3.

    Article  Google Scholar 

  • Mazzone, D.N., G.I. Tardos, and R. Pfeffer (1986), The effect of gravity on the shape and strength of a liquid bridge between two spheres, J. Colloid Interf. Sci. 113,2, 544–556, DOI: 10.1016/0021-9797(86)90187-6.

    Article  Google Scholar 

  • Melrose, J.C. (1966), Model calculations for capillary condensation, AIChE J. 12,5, 986–994, DOI 10.1002/aic.690120526.

    Article  Google Scholar 

  • Mielniczuk, B., T. Hueckel, and M.S. El Youssoufi (2014), Evaporation-induced evolution of the capillary force between two grains, Granul. Matter, DOI: 10.1007/s10035-014-0512-6.

    Google Scholar 

  • Padday, J.F. (1992), The formation and breakage of liquid bridges under microgravity, Microgravity Q. 2,4, 239–249.

    Google Scholar 

  • Padday, J.F., G. Pétré, C.G. Rusu, J. Gamero, and G. Wozniak (1997), The shape, stability and breakage of pendant liquid bridges, J. Fluid Mech. 352, 177–204, DOI 10.1017/S0022112097007234.

    Article  Google Scholar 

  • Peregrine, D.H., G. Shoker, and A. Symon (1990), The bifurcation of liquid bridges, J. Fluid Mech. 212, 25–39, DOI 10.1017/S0022112090001835.

    Article  Google Scholar 

  • Péron, H., J.Y. Delenne, L. Laloui, and M.S. El Youssoufi (2009a), Discrete element modelling of drying shrinkage and cracking of soils, Comput. Geotech. 36,1–2, 61–69, DOI 10.1016/j.compgeo.2008.04.002.

    Article  Google Scholar 

  • Péron, H., T. Hueckel, L. Laloui, and L.B. Hu (2009b), Fundamentals of desiccation cracking of fine-grained soils: experimental characterization and mechanisms identification, Can. Geotech. J. 46,10, 1177–1201, DOI: 10.1139/T09-054.

    Article  Google Scholar 

  • Péron, H., L. Laloui, L.B. Hu, and T. Hueckel (2013), Formation of drying crack patterns in soils: a deterministic approach, Acta Geotech. 8, 2, 215–221, DOI: 10.1007/s11440-012-0184-5.

    Article  Google Scholar 

  • Plateau, J. (1864), The figures of equilibrium of a liquid mass, The Annual Report of the Smithsonian Institution, Washington DC, USA, 338–369.

    Google Scholar 

  • Plateau, J. (1873), Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires, Gauthier-Villars, Paris (in French).

    Google Scholar 

  • Shi, X.D., M.P. Brenner, and S.R. Nagel (1994), A cascade of stucture in a drop falling from a faucet, Science 265,5169, 219–222, DOI: 10.1126/science.265.5169.219.

    Article  Google Scholar 

  • van Honschoten, J.W., N.R. Tas, and M. Elwenspoek (2010), The profile of a capillary liquid bridge between solid surfaces, Am. J. Phys. 78,3, 277–286, DOI: 10.1119/1.3273854.

    Article  Google Scholar 

  • Vaynblat, D., J.R. Lister, and T.P. Witelski (2001), Rupture of thin viscous films by van der Waals forces: Evolution and self-similarity, Phys. Fluids 13,5, 1130–1140, DOI: 10.1063/1.1359749.

    Article  Google Scholar 

  • Willett, Ch.D., M.J. Adams, S.A. Johnson, and J.P.K. Seville (2000), Capillary bridges between two spherical bodies, Langmuir 16,24, 9396–9405, DOI: 10.1021/la000657y.

    Article  Google Scholar 

  • Zhang, X., R.S. Padgett, and O.A. Basaran (1996), Nonlinear deformation and breakup of stretching liquid bridges, J. Fluid Mech. 329, 207–245, DOI 10.1017/S0022112096008907.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boleslaw Mielniczuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mielniczuk, B., El Youssoufi, M.S., Sabatier, L. et al. Rupture of an evaporating liquid bridge between two grains. Acta Geophys. 62, 1087–1108 (2014). https://doi.org/10.2478/s11600-014-0225-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-014-0225-6

Key words

Navigation