Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 29, 2011

Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime

  • Ekaterina Gongadze EMAIL logo , Ursula Rienen and Aleš Iglič

Abstract

The interaction between a charged metal implant surface and a surrounding body fluid (electrolyte solution) leads to ion redistribution and thus to formation of an electrical double layer (EDL). The physical properties of the EDL contribute essentially to the formation of the complex implant-biosystem interface. Study of the EDL began in 1879 by Hermann von Helmholtz and still today remains a scientific challenge. The present mini review is focused on introducing the generalized Stern theory of an EDL, which takes into account the orientational ordering of water molecules. To ascertain the plausibility of the generalized Stern models described, we follow the classical model of Stern and introduce two Langevin models for spatial variation of the relative permittivity for point-like and finite sized ions. We attempt to uncover the subtle interplay between water ordering and finite sized ions and their impact on the electric potential near the charged implant surface. Two complementary effects appear to account for the spatial dependency of the relative permittivity near the charged implant surface — the dipole moment vectors of water molecules are predominantly oriented towards the surface and water molecules are depleted due to the accumulation of counterions. At the end the expressions for relative permittivity in both Langevin models were generalized by also taking into account the cavity and reaction field.

[1] Helmholtz, H. Studien über elektrische Grenzschichten. Ann. Phys. 7 (1879) 337–382. Search in Google Scholar

[2] Gouy, M.G. Sur la constitution de la charge electrique à la surface d’un electrolyte. J. Physique (France) 9 (1910) 457–468. Search in Google Scholar

[3] Chapman, D.L. A contribution to the theory of electrocapillarity. Philos. Mag. 25 (1913) 475–481. Search in Google Scholar

[4] Stern, O. Zur Theorie der elektrolytischen Doppelschicht. Z. Elektrochemie 30 (1924) 508–516. Search in Google Scholar

[5] Manciu, M. and Ruckenstein, E. The polarization model for hydration/double layer interactions: the role of the electrolyte ions. Adv. Coll. Int. Sci. 112 (2004) 109–128. http://dx.doi.org/10.1016/j.cis.2004.09.00110.1016/j.cis.2004.09.001Search in Google Scholar

[6] Gongadze, E., Bohinc, K., van Rienen, U., Kralj-Iglič, V. and Iglič, A. Spatial variation of permittivity near a charged membrane in contact with electrolyte solution, in: Advances in planar lipid bilayers and liposomes (Iglič, A. Ed.) 11th volume, Elsevier, 2010, 101–126. 10.1016/S1554-4516(10)11006-0Search in Google Scholar

[7] Gongadze, E., van Rienen, U., Kralj-Iglič, V. and Iglič, A. Langevin Poisson-Boltzmann equation: point-like ions and water dipoles near charged membrane surface. Gen. Physiol. Biophys. 30 (2011) 130–137. http://dx.doi.org/10.4149/gpb_2011_02_13010.4149/gpb_2011_02_130Search in Google Scholar PubMed

[8] Outhwaite CW. Towards a mean electrostatic potential treatment of an iondipole mixture or a dipolar system next to a plane wall. Mol. Phys. 48 (1983) 599–614. http://dx.doi.org/10.1080/0026897830010043110.1080/00268978300100431Search in Google Scholar

[9] Bazant, M.Z., Kilic, M.S., Storey, B. and Ajdari, A. Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. Adv Coll. Int. Sci. 152 (2009) 48–88. http://dx.doi.org/10.1016/j.cis.2009.10.00110.1016/j.cis.2009.10.001Search in Google Scholar PubMed

[10] Jackson, J.D. Classical electrodynamics. 3rd edition, Wiley and Son Inc., 1998. Search in Google Scholar

[11] Butt, H. J., Graf, K. and Kappl, M. Physics and chemistry of interfaces. 1st edition, Wiley-VCH Verlag, 2003. 10.1002/3527602313Search in Google Scholar

[12] McLaughlin, S. The electrostatic properties of membranes. Ann. Rev. Biophys. Chem. 18 (1989) 113–136. http://dx.doi.org/10.1146/annurev.bb.18.060189.00055310.1146/annurev.bb.18.060189.000553Search in Google Scholar PubMed

[13] Bikerman, J.J. Structure and capacity of the electrical double layer. Phil. Mag. 33 (1942) 384–397. Search in Google Scholar

[14] Kralj-Iglič, V. Free energy of the electric double layer within the approximation of high electrolyte concentration. Electrotechnical Rev. 62 (1995) 104–108. Search in Google Scholar

[15] Kralj-Iglič, V. and Iglič A. A simple statistical mechanical approach to the free energy of the electric double layer including the excluded volume effect. J. Phys. II 6 (1996) 477–491. http://dx.doi.org/10.1051/jp2:199619310.1051/jp2:1996193Search in Google Scholar

[16] Lamperski, S. and Outhwaite, C.W. Exclusion volume term in the inhomogeneous Poisson-Boltzmann theory for high surface charge. Langmuir 18 (2002) 3423–3424. http://dx.doi.org/10.1021/la011852v10.1021/la011852vSearch in Google Scholar

[17] Iglič, A., Gongadze, E. and Bohinc, K. Excluded volume effect and orientational ordering near charged surface in solution of ions and Langevin dipoles. Bioelectrochemistry 79 (2010) 223–227. http://dx.doi.org/10.1016/j.bioelechem.2010.05.00310.1016/j.bioelechem.2010.05.003Search in Google Scholar PubMed

[18] Adams, D.J. Theory of the dielectric constant of ice. Nature 293 (1981) 447–449. http://dx.doi.org/10.1038/293447a010.1038/293447a0Search in Google Scholar

[19] Dill, K.A. and Bromberg S. Molecular driving forces. Garland Science, 2003. Search in Google Scholar

[20] Fröhlich, H. Theory of dielectrics. Clarendon Press, 1964. Search in Google Scholar

[21] Franks, F. Water. A comprehensive treatise, vol. 1, The physics and physical chemistry of water, Plenum Press, 1972 10.1007/978-1-4684-8334-5Search in Google Scholar

[22] Onsager, L. Electric moments of molecules in liquids. J. Am. Chem. Soc. 58 (1936) 1486–1493. http://dx.doi.org/10.1021/ja01299a05010.1021/ja01299a050Search in Google Scholar

[23] Kirkwood, J.G. The dielectric polarization of polar liquids. J. Chem. Phys. 7 (1939) 911–919. http://dx.doi.org/10.1063/1.175034310.1063/1.1750343Search in Google Scholar

[24] Booth, F. The dielectric constant of water and the saturation effect. J. Chem. Phys. 19 (1951) 391–394. http://dx.doi.org/10.1063/1.174823310.1063/1.1748233Search in Google Scholar

[25] Urbanija, J., Bohinc, K., Bellen, A., Maset, S., Iglič, A., Kralj-Iglič, V. and Kumar, P.B.S. Attraction between negatively charged surfaces mediated by spherical counterions with quadrupolar charge distribution. J. Chem. Phys. 129 (2008) 105101. http://dx.doi.org/10.1063/1.297298010.1063/1.2972980Search in Google Scholar PubMed

[26] Frank, M., Sodin-Šemrl, S., Rozman, B., Potočnik, M. and Kralj-Iglič, V. Effects of low-molecular-weight heparin on adhesion and vesiculation of phospholipid membranes — a possible mechanism for the treatment of hypercoagulability in antiphospholipid syndrome. Ann. N. Y. Acad. Sci. 1173 (2009) 874–886. http://dx.doi.org/10.1111/j.1749-6632.2009.04745.x10.1111/j.1749-6632.2009.04745.xSearch in Google Scholar PubMed

[27] Zelko, J., Iglič, A., Kralj-Iglič, V. and Kumar, P.B.S. Effects of counterion size on the attraction between similarly charged surfaces. J. Chem. Phys. 133 (2010) 204901. http://dx.doi.org/10.1063/1.350689610.1063/1.3506896Search in Google Scholar PubMed

[28] Kabaso, D., Gongadze, E., Perutkova, Š., Kralj-Iglič, V., Matschegewski, C., Beck, U., van Rienen, U. and Iglič, A. Mechanics and electrostatics of the interactions between osteoblasts and titanium surface. Comput. Meth. Biomech. Biomed. Eng. 14 (2011) 469–482. http://dx.doi.org/10.1080/10255842.2010.53498610.1080/10255842.2010.534986Search in Google Scholar PubMed

[29] Smeets, R., Kolk, A., Gerressen, M., Driemel, O., Maciejewski, O., Hermanns-Sachweh, B., Riediger, D. and Stein J. A new biphasic osteoinductive calcium composite material with a negative zeta potential for bone augmentation. Head Face Med. (2009) Available from: 5: 13 doi: 10.1186/1746-160X-5-13. 10.1186/1746-160X-5-13Search in Google Scholar PubMed PubMed Central

[30] Heath, M.D., Henderson, B. and Perkin S. Ion-specific effects on the interaction between fibronectin and negatively charged mica surfaces. Langmuir 26 (2010) 5304–5308. http://dx.doi.org/10.1021/la100678n10.1021/la100678nSearch in Google Scholar

[31] Teng, N.C., Nakamura, S., Takagi, Y., Yamashita, Y., Ohgaki, M. and Yamashita K. A new approach to enhancement of bone formation by electrically polarized hydroxyapatite. J. Dent. Res. 80 (2000) 1925–1929. Search in Google Scholar

[32] Oghaki, M., Kizuki, T., Katsura, M. and Yamashita K. Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite. J. Biomed. Mater. Res. 57 (2001) 366–373. http://dx.doi.org/10.1002/1097-4636(20011205)57:3<366::AID-JBM1179>3.0.CO;2-X10.1002/1097-4636(20011205)57:3<366::AID-JBM1179>3.0.CO;2-XSearch in Google Scholar

[33] Park, J., Bauer, S., Schlegel, K., Neukam, F., Mark, K. and Schmuki, P. TiO2 nanotube surfaces: 15 nm — an optimal length scale of surface topography for cell adhesion and differentiation. Small 5 (2009) 666–671. http://dx.doi.org/10.1002/smll.20080147610.1002/smll.200801476Search in Google Scholar

[34] Puckett, S., Pareta, R. and Webster T. Nano rough micron patterned titanium for directing osteoblast morphology and adhesion. Int. J. Nanomedicine 3 (2008) 229–241. Search in Google Scholar

[35] Gongadze, E., Kabaso, D., Bauer, S., Slivnik, T., Schmuki, P., van Rienen, U., Iglič, A. Adhesion of osteoblasts to a nanorough titanium implant surface. Int. J. Nanomedicine 6 (2011) in press Search in Google Scholar

[36] Schara, K., Janša, V., Šuštar, V., Dolinar, D., Pavlič, J.I., Lokar, M., Kralj-Iglič, V., Veranič, P., Iglič, A. Mechanisms for the formation of membranous nanostructures in cell-to-cell communication. Cell. Mol. Biol. Lett. 14 (2009) 636–656. http://dx.doi.org/10.2478/s11658-009-0018-010.2478/s11658-009-0018-0Search in Google Scholar

Published Online: 2011-9-29
Published in Print: 2011-12-1

© 2011 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-011-0024-x/html
Scroll to top button