Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 1, 2007

A review of methods for synthesis of nanostructured metals with emphasis on iron compounds

  • A. Tavakoli EMAIL logo , M. Sohrabi and A. Kargari
From the journal Chemical Papers

Abstract

Synthesis of metal nanoparticles with specific properties is a newly established research area attracting a great deal of attention. Several methods have been put forward for synthesis of these materials, namely chemical vapor condensation, arc discharge, hydrogen plasma—metal reaction, and laser pyrolysis in the vapor phase, microemulsion, hydrothermal, sol-gel, sonochemical, and microbial processes taking place in the liquid phase, and ball milling carried out in the solid phase.

The properties of metal nanoparticles depend largely on their synthesis procedures. In this paper the fundamentals, advantages, and disadvantages of each synthesis method are discussed.

[1] Glenn, J. C., Technol. Forecast. Soc. 73, 128 (2006). Search in Google Scholar

[2] Burda, C., Chen, X., Narayanan, R., and El-Sayed, M. A., Chem. Rev. 105, 1025 (2005). Search in Google Scholar

[3] Huang, W. C. and Lue, J. T., J. Phys. Chem. Solids 58, 1529 (1997). 10.1016/S0022-3697(97)00107-8Search in Google Scholar

[4] Huang, W. C. and Lue, J. T., Phys. Rev. B: Condens. Matter 59, 69 (1999). 10.1103/PhysRevB.59.69Search in Google Scholar

[5] Lue, J. T., Huang, W. C., and Ma, S. K., Phys. Rev. B: Condens. Matter 51, 14570 (1995). 10.1103/PhysRevB.51.14570Search in Google Scholar

[6] Capek, I., Adv. Colloid Interface Sci. 110, 49 (2004). Search in Google Scholar

[7] Liu, T., Leng, Y. H., and Li, X. G., Solid State Commun. 125, 391 (2003). Search in Google Scholar

[8] Liu, T., Shao, H. Y., and Li, X. G., J. Phys.: Condens. Matter 15, 2507 (2003). 10.1088/0953-8984/15/17/306Search in Google Scholar

[9] Lane, R., Craig, B., and Babcock, W., AMPTIAC 6, 31 (2002). Search in Google Scholar

[10] Nanoscale Materials in Chemistry (Klabunde, K. J., Editor). Chapter 4. Wiley, New York, 2001. Search in Google Scholar

[11] Nanoscale Materials (Liz-Marzan, L. M. and Kamat, P. V., Editors), p. 81. Kluwer Academic Publishers, Boston, 2003. 10.1007/b101855Search in Google Scholar

[12] Olah, G. A. and Laureate, N., in Handbook of Nanostructured Materials and Nanotechnology (Nalwa, H. S. Editor). Vol. 1, p. 3. Academic Press, San Diego, 2000. Search in Google Scholar

[13] Gonsalves, K. E., Li, H., Perez, R., Santiago, P., and Jose-Yacaman, M., Coord. Chem. Rev. 206, 607 (2000). Search in Google Scholar

[14] Suslick, K. S. and Price, G. J., Annu. Rev. Mater. Sci. 29, 295 (1999). Search in Google Scholar

[15] Tjong, S. C. and Chen, H., Mater. Sci. Eng., R 45, 1 (2004). 10.1016/j.mser.2004.07.001Search in Google Scholar

[16] Huber, D. L., Small 1, 482 (2005). 10.1002/smll.200500006Search in Google Scholar

[17] Daniel, M. C. and Astruc, D., Chem. Rev. 104, 293 (2004). Search in Google Scholar

[18] Nano-Powders: Organization of the Disordered/Nanocluster Nucleation, Chapter 1, http://www.eng.uc.edu/:_gbeaucag/Classes/Nanopowders/Chapter_1_html/Chapter_1.html Search in Google Scholar

[19] Marvast, M. A., Sohrabi, M., Zarrinpashne, S., and Baghmisheh, G., Chem. Eng. Technol. 28, 78 (2005). Search in Google Scholar

[20] Marvast, M. A., Sohrabi, M., Zarrinpashne, S., and Baghmisheh, G., Gasoline Production from Syngas: Fixed Bed FT Reactor Study, CHEMCA 2004, Sydney, 2004. Search in Google Scholar

[21] Mahajan, D., Gutlich, P., Ensling, J., Pandya, K., Stumm, U., and Vijayaraghavan, P., Energy Fuels 17, 1210 (2003). 10.1021/ef0300343Search in Google Scholar

[22] Mahajan, D., Gutlich, P., and Stumm, U., Catal. Commun. 4, 101 (2003). Search in Google Scholar

[23] Lopez-Perez, J. A., Lopez-Quintela, M. A., Mira, J., Rivas, J., and Charles, S. W., J. Phys. Chem. B 101, 8045 (1997). 10.1021/jp972046tSearch in Google Scholar

[24] Tavakoli, A., Sohrabi, M., and Kargari, A., Preparation of Iron Nanoparticles and Study on their Catalytic Properties in Fischer—Tropsch Process, Report No. 61/160. Amirkabir University of Technology, Tehran, 2005. Search in Google Scholar

[25] Champion, Y., Guerin-Mailly, S., Bonnentien, J. L., and Langlois, P., Scr. Mater. 44, 1609 (2001). Search in Google Scholar

[26] Sanders, P. G., Eastman, J. A., and Weertman, J. R., Acta Mater. 45, 4019 (1997). Search in Google Scholar

[27] Chang, W., Skandan, G., Danforth, S. C., Kear, B. H., and Hahn, H., Nanostruct. Mater. 4, 507 (1994). Search in Google Scholar

[28] Li, D., Choi, C. J., Yu, J. H., Kim, B. K., and Zhang, Z. D., J. Magn. Magn. Mater. 283, 8 (2004). Search in Google Scholar

[29] Wang, Z. H., Choi, C. J., Kim, B. K., Kim, J. C., and Zhang, Z. D., J. Alloys Compd. 351, 319 (2003). Search in Google Scholar

[30] Chang, W., Skandan, G., Hahn, H., Danforth, S. C., and Kear, B. H., Nanostruct. Mater. 4, 345 (1994). Search in Google Scholar

[31] Choi, C. J., Tolochko, O., and Kim, B. K., Mater. Lett. 56, 289 (2002). Search in Google Scholar

[32] Choi, C. J., Dong, X. L., and Kim, B. K., Scr. Mater. 44, 2225 (2001). Search in Google Scholar

[33] Wang, Z. H., Choi, C. J., Kim, B. K., Kim, J. C., and Zhang, Z. D., Carbon 41, 1751 (2003). 10.1016/S0008-6223(03)00127-1Search in Google Scholar

[34] Li, D., Choi, C. J., Kim, B. K., and Zhang, Z. D., J. Magn. Magn. Mater. 277, 64 (2004). Search in Google Scholar

[35] Wang, Z. H., Choi, C. J., Kim, J. C., Kim, B. K., and Zhang, Z. D., Mater. Lett. 57, 3560 (2003). Search in Google Scholar

[36] Choi, C. J., Kim, B. K., Tolochko, O., and Da, L., Rev. Adv. Mater. Sci. 5, 487 (2003). Search in Google Scholar

[37] Dong, X. L., Choi, C. J., and Kim, B. K., Scr. Mater. 47, 857 (2002). Search in Google Scholar

[38] Kim, T. S., Sun, W., Choi, C. J., and Lee, B. T., Rev. Adv. Mater. Sci. 5, 481 (2003). Search in Google Scholar

[39] Fung, K. K., Qin, B., and Zhang, X. X., Mater. Sci. Eng., A 286, 135 (2000). 10.1016/S0921-5093(00)00717-6Search in Google Scholar

[40] Lee, D. W., Yu, J. H., Jang, T. S., and Kim, B. K., Mater. Lett. 59, 2124 (2005). http://dx.doi.org/10.1016/j.matlet.2005.02.04510.1016/j.matlet.2005.02.045Search in Google Scholar

[41] Oh, S. J., Choi, C. J., Kwon, S. J., Jin, S. H., Kim, B. K., and Park, J. S., J. Magn. Magn. Mater. 280, 147 (2004). Search in Google Scholar

[42] Wang, Z. H., Zhang, Z. D., Choi, C. J., and Kim, B. K., J. Alloys Compd. 361, 289 (2003). Search in Google Scholar

[43] Dravid, V. P., Host, J. J., Teng, M. H., Elliott, B., Hwang, J. H., Johnson, D. L., Mason, T. O., and Weertman, J. R., Nature 374, 602 (1995). 10.1038/374602a0Search in Google Scholar

[44] Harris, P. J. F. and Tsang, S. C., Carbon 36, 1859 (1998). 10.1016/S0008-6223(98)90057-4Search in Google Scholar

[45] Wu, W. Z., Zhu, Z. P., Liu, Z. Y., Xie, Y. I., Zhang, J., and Hu, T. D., Carbon 41, 317 (2003). 10.1016/S0008-6223(02)00292-0Search in Google Scholar

[46] Chen, C. P., Chang, T. H., and Wang T. F., Ceram. Int. 28, 925 (2002). Search in Google Scholar

[47] Ajayan, P. M., Chem. Rev. 99, 1787 (1999). Search in Google Scholar

[48] Wang, Y. H., Chiu, S. C., Lin, K. M., and Li, Y. Y., Carbon 42, 2535 (2004). 10.1016/j.carbon.2004.05.028Search in Google Scholar

[49] Kajiura, H., Huang, H. J., Tsutsui, S., Murakami, Y., and Miyakoshi, M., Carbon 40, 2423 (2002). 10.1016/S0008-6223(02)00129-XSearch in Google Scholar

[50] Osvath, Z., Koos, A. A., Horvath, Z. E., Gyulai, J., Benito, A. M., Martinez, M. T., Maser, W., and Biro, L. P., Mater. Sci. Eng., C 23, 561 (2003). Search in Google Scholar

[51] Sano, N., Wang, H. L., Chhowalla, M., Alexandrou, I., Amaratunga, G. A. J., Naito, M., and Kanki, T., Chem. Phys. Lett. 368, 331 (2003). Search in Google Scholar

[52] Ohno, S. and Uda, M., Trans. Jpn. Inst. Met. 48, 640 (1984). Search in Google Scholar

[53] Liu, T., Shao, H. Y., and Li, X. G., Nanotechnology 14, L1 (2003). 10.1088/0957-4484/14/3/101Search in Google Scholar

[54] Shao, H. Y., Wang, Y. T., Xu, H. R., and Li, X. G., Mater. Sci. Eng., B 110, 221 (2004). 10.1016/j.mseb.2004.03.013Search in Google Scholar

[55] Grimes, C. A., Qian, D., Dickey, E. C., Allen, J. L., and Eklund, P. C., J. Appl. Phys. 87, 5642 (2000). Search in Google Scholar

[56] David, B., Pizurova, N., Schneeweiss, O., Bezdicka, P., Morjan, I., and Alexandrescu, R., J. Alloys Compd. 378, 112 (2004). Search in Google Scholar

[57] Dumitrache, F., Morjan, I., Alexandrescu, R., Ciupina, V., Prodan, G., Voicu, I., Fleaca, C., Albu, L., Savoiu, M., Sandu, I., Popovici, E., and Soare, I., Appl. Surf. Sci. 247, 25 (2005). Search in Google Scholar

[58] Martelli, S., Mancini, A., Giorgi, R., Alexandrescu, R., Cojocaru, S., Crunteanu, A., Voicu, I., Balu, M., and Morjan, I., Appl. Surf. Sci. 154, 353 (2000). Search in Google Scholar

[59] Veintemillas-Verdaguer, S., Bomati-Miguel, O., and Morales, M. P., Scr. Mater. 47, 589 (2002). Search in Google Scholar

[60] Paul, B. K. and Moulik, S. P., J. Dispersion Sci. Technol. 18, 301 (1997). Search in Google Scholar

[61] Gutmann, H. and Kertes, A. S., J. Colloid Interface Sci. 51, 406 (1973). Search in Google Scholar

[62] Liu, J., Kim, A. Y., Wang, L. Q., Palmer, B. J., Chen, Y. L., Bruinsma, P., Bunker, B. C., Exarhos, G. J., Graff, G. L., Rieke, P. C., Fryxell, G. E., Virden, J. W., Tarasevich, B. J., and Chick, L. A., Adv. Colloid Interface Sci. 69, 131 (1996). Search in Google Scholar

[63] Wang, C. Y., Jiqng, W. Q., Zhou, Y., Wang, Y. N., and Chen, Z. Y., Mater. Res. Bull. 35, 53 (2000). Search in Google Scholar

[64] Ji, M., Chen, X., Wai, C. M., and Fulton, J. L., J. Am. Chem. Soc. 121, 2631 (1999). Search in Google Scholar

[65] Ohde, H., Hunt, F., and Wai, C. M., Chem. Mater. 13, 4130 (2001). Search in Google Scholar

[66] Li, F., Vipulanandan, C., and Mohanty, K. K., Colloids Surf., A 223, 103 (2003). 10.1016/S0927-7757(03)00187-0Search in Google Scholar

[67] Xu, Z. Z., Wang, C. C., Yang, W. L., Deng, Y. H., and Fu, S. K., J. Magn. Magn. Mater. 277, 136 (2004). Search in Google Scholar

[68] Deng, Y., Wang, L., Yang, W., Fu, S., and Elaissari, A., J. Magn. Magn. Mater. 257, 69 (2003). Search in Google Scholar

[69] Tartaj, P. and Tartaj, J., Chem. Mater. 14, 536 (2002). Search in Google Scholar

[70] Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., and Tan, W. H., Langmuir 17, 2900 (2001). 10.1021/la0008636Search in Google Scholar

[71] Yoshimura, M. and Somiya, S., Mater. Chem. Phys. 61, 1 (1999). 10.1016/S0254-0584(99)00104-2Search in Google Scholar

[72] Cote, L. J., Teja, A. S., Wilkinson, A. P., and Zhang, Z. J., Fluid Phase Equilib. 210, 307 (2003). Search in Google Scholar

[73] Lee, J. S. and Choi, S. C., Mater. Lett. 58, 390 (2004). Search in Google Scholar

[74] Giri, S., Samanta, S., Maji, S., Ganguli, S., and Bhaumik, A., J. Magn. Magn. Mater. 285, 296 (2005). Search in Google Scholar

[75] Chen, Z. Z., Shi, E. W., Li, W. J., Zheng, Y. Q., and Zhong, W. Z., Mater. Lett. 55, 281 (2002). Search in Google Scholar

[76] Mishra, D., Anand, S., Panda, R. K., and Das, R. P., Mater. Chem. Phys. 86, 132 (2004). Search in Google Scholar

[77] Ataie, A., Priamoon, M. R., Harris, I. R., and Ponton, C. B., J. Mater. Sci. 30, 5600 (1995). Search in Google Scholar

[78] Zhang, D. S., Yoshida, T., Furuta, K., and Minoura, H., J. Photochem. Photobiol., A 164, 159 (2004). 10.1016/j.jphotochem.2003.11.018Search in Google Scholar

[79] Tani, E., Yoshimura, M., and Somiya, S., J. Am. Ceram. Soc. 66, 11 (1983). Search in Google Scholar

[80] Dawson, W. J., Am. Ceram. Soc. Bull. 67, 1673 (1988). Search in Google Scholar

[81] Pivin, J. C. and Vincent, E., in Physics, Chemistry and Applications of Nanostructures: Reviews and Short Notes to Nanomeeting 2003 Minsk (Borisenko, V. E., Gaponenko, S. V., and Gurin, V. S., Editors), p. 285. World Scientific Publishing, London, 2003. Search in Google Scholar

[82] Nagineni, V. S., Zhao, S. H., Potluri, A., Liang, Y., Siriwardane, U., Seetala, N. V., Fang, J., Palmer, J., and Kuila, D., Ind. Eng. Chem. Res. 44, 5602 (2005). Search in Google Scholar

[83] Hseih, C. T., Huang, W. L., and Lue, J. T., J. Phys. Chem. Solids 63, 733 (2002). 10.1016/S0022-3697(01)00222-0Search in Google Scholar

[84] Lu, Y., Yin, Y. D., Mayers, B. T., and Xia, Y. N., Nano Lett. 2, 183 (2002). Search in Google Scholar

[85] Santos, A., Ardisson, J. D., Tambourgi, E. B., and Macedo, W. A. A., J. Magn. Magn. Mater. 177, 247 (1998). Search in Google Scholar

[86] Ennas, G., Musinu, A., Piccaluga, G., Zedda, D., Gatteschi, D., Sangregorio, C., Stanger, J. L., Concas, G., and Spano, G., Chem. Mater. 10, 495 (1998). Search in Google Scholar

[87] Bruni, S., Cariati, F., Casu, M., Lai, A., Musinu, A., Piccaluga, G., and Solinas, S., Nanostruct. Mater. 11, 573 (1999). Search in Google Scholar

[88] Suslick, K. S., Choe, S. B., Cichowlas, A. A., and Grinstaff, M. W., Nature 353, 414 (1991). 10.1038/353414a0Search in Google Scholar

[89] Suslick, K. S., Hyeon, T., Fang, M., and Cichowlas, A. A., in Advanced Catalysts and Nanostructured Materials (Moser, W. R., Editor), Chapter 8. Academic Press, New York, 1996. Search in Google Scholar

[90] Khalil, H., Mahajan, D., Rafailovich, M., Gelfer, M., and Pandya, K., Langmuir 20, 6896 (2004). 10.1021/la0497402Search in Google Scholar

[91] Pol, V. G., Motiei, M., Gedanken, A., Calderon-Moreno, J., and Mastai, Y., Chem. Mater. 15, 1378 (2003). Search in Google Scholar

[92] Vijayakumar, R., Koltypin, Y., Felner, I., and Gedanken, A., Mater. Sci. Eng., A 286, 101 (2000). 10.1016/S0921-5093(00)00647-XSearch in Google Scholar

[93] Gedanken, A., Ultrason. Sonochem. 11, 47 (2004). Search in Google Scholar

[94] Shafi, K. V. P. M., Ulman, A., Yan, X. Z., Yang, N. L., Estournes, C., White, H., and Rafailovich, M., Langmuir 17, 5093 (2001). 10.1021/la010421+Search in Google Scholar

[95] Roh, Y., Lauf, R. J., McMillan, A. D., Zhang, C., Rawn, C. J., Bai, J., and Phelps, T. J., Solid State Commun. 118, 529 (2001). Search in Google Scholar

[96] Tsang, S. C., Qiu, J. S., Harris, P. J. F., Fu, Q. J., and Zhang, N., Chem. Phys. Lett. 322, 553 (2000). Search in Google Scholar

[97] Janot, R. and Guerard, D., J. Alloys Compd. 333, 302 (2002). Search in Google Scholar

[98] Pithawalla, Y. B., El Shall, M. S., and Deevi, S. C., Intermetallics 8, 1225 (2000). 10.1016/S0966-9795(00)00076-5Search in Google Scholar

[99] Murty, B. S. and Ranganathan, S., Int. Mater. Rev. 43, 101 (1998). Search in Google Scholar

[100] Chin, P. P., Ding, J., Yi, J. B., and Liu, B. H., J. Alloys Compd. 390, 255 (2005). Search in Google Scholar

[101] Wu, J. M., Mater. Lett. 48, 324 (2001). Search in Google Scholar

[102] Rawers, J. and Cook, D., Nanostruct. Mater. 11, 331 (1999). Search in Google Scholar

[103] Joseyphus, R. J., Narayanasamy, A., Nigam, A. K., and Krishnan, R., J. Magn. Magn. Mater. 296, 57 (2006). Search in Google Scholar

[104] Zhan, Z. L., He, Y. D., Wang, D. R., and Gao, W., Intermetallics 14, 75 (2006). 10.1016/j.intermet.2005.04.019Search in Google Scholar

[105] Kalyanaraman, R., Yoo, S., Krupashankara, M. S., Sudarshan, T. S., and Dowding, R. J., Nanostruct. Mater. 10, 1379 (1998). Search in Google Scholar

[106] Yu, J. H., Lee, J. S., and Ahn, K. H., Scr. Mater. 44, 2213 (2001). Search in Google Scholar

[107] Kim, J. C. and Kim, B. K., Scr. Mater. 50, 969 (2004). Search in Google Scholar

[108] Yu, J. H., Kim, S. Y., Lee, J. S., and Ahn, K. H., Nanostruct. Mater. 12, 199 (1999). Search in Google Scholar

[109] Lester, E., Blood, P., Denyer, J., Giddings, D., Azzopardi., B., and Poliakoff, M., J. Supercrit. Fluids 37, 209 (2006). 10.1016/j.supflu.2005.08.011Search in Google Scholar

[110] Srivastava, D. N., Perkas, N., Gedanken, A., and Felner, I., J. Phys. Chem. B 106, 1878 (2002). 10.1021/jp015532wSearch in Google Scholar

Published Online: 2007-6-1
Published in Print: 2007-6-1

© 2007 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-007-0014-7/html
Scroll to top button