Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 30, 2008

Design and economics of industrial production of fructooligosaccharides

  • Katarína Vaňková EMAIL logo , Zdenka Onderková , Monika Antošová and Milan Polakovič
From the journal Chemical Papers

Abstract

A process for industrial production of fructooligosaccharides (FOS’s) based on the conversion of sucrose by immobilized fructosyltransferase (FTase) from the cells of Aureobasidium pullulans CCY 27-1-94 was developed. Particular process operations and conditions were designed employing results of laboratory and semi-pilot scale experiments. The process flowsheet comprised three sections: FTase production, which included fermentation, isolation and purification of the enzyme, FTase immobilization and FOS’s production where a product with a high content of FOS’s was prepared by the removal of glucose, fructose and unreacted sucrose from the reaction mixture using simulated moving-bed chromatography. Two alternative process flowsheets were proposed for the annual production of 10 000 t of FOS’s: one for a powdery product and the second one for syrup. The economic analysis provided the costs for the production of immobilized FTase and FOS’s using two different price estimates for sucrose.

[1] Aboudzadeh, M. R., Jiawen, Z., & Bin, W. (2006). Modeling of protein adsorption to DEAE Sepharose FF: Comparison of data with model simulation. Korean Journal of Chemical Engineering, 23, 124–130. DOI: 10.1007/BF02705703. http://dx.doi.org/10.1007/BF0270570310.1007/BF02705703Search in Google Scholar

[2] Aydogan, N., Gurkan, T., & Yilmaz, L. (1998). Effect of operating parameters on the separation of sugars by nanofiltration. Separation Science and Technology, 33, 1767–1785. http://dx.doi.org/10.1080/0149639980854590410.1080/01496399808545904Search in Google Scholar

[3] Bekers, M., Laukevics, J., Upite, D., Kaminska, E., Vigants, A., Viesturs, U., Pankova, L., & Danilevics, A. (2002). Fructooligosaccharide and levan producing activity of Zymomonas mobilis extracellular levansucrase. Process Biochemistry, 38, 701–706. DOI: 10.1016/S0032-9592(02)00189-9. http://dx.doi.org/10.1016/S0032-9592(02)00189-910.1016/S0032-9592(02)00189-9Search in Google Scholar

[4] Crittenden, R. G., & Playne, M. J. (1996). Production, properties and applications of food-grade oligosaccharides. Trends in Food Science & Technology, 7, 353–361. DOI: 10.1016/S0924-2244(96) 10038-8. http://dx.doi.org/10.1016/S0924-2244(96)10038-810.1016/S0924-2244(96)10038-8Search in Google Scholar

[5] Flamm, G., Glinsmann, W., Kritchevsky, D., Prosky, L., & Roberfroid, M. (2001). Inulin and oligofructose as dietary fiber: a review of the evidence. Critical Reviews in Food Science and Nutrition, 41, 353–362. DOI: 10.1080/20014091091841. http://dx.doi.org/10.1080/2001409109184110.1080/20014091091841Search in Google Scholar

[6] Franck, A. (2002). Technological functionality of inulin and oligofructose. British Journal of Nutrition, 87, 287–291. DOI: 10.1079/BJN/2002550. 10.1079/BJN/2002550Search in Google Scholar

[7] Garleb, K. A., Snook, J. T., Marcon, M. J., Wolf, B. W., & Johnson, W. A. (1996). Effect of fructooligosaccharide containing enteral formulas on subjective tolerance factors, serum chemistry profiles, and feacal bifidobacteria in healthy adult male subjects. Microbial Ecology in Health and Disease, 9, 279–285. http://dx.doi.org/10.1002/(SICI)1234-987X(199611)9:6<279::AID-MEH440>3.3.CO;2-W10.1002/(SICI)1234-987X(199611)9:6<279::AID-MEH440>3.3.CO;2-WSearch in Google Scholar

[8] Ghazi, I., Fernandez-Arrojo, L., Garcia-Arellano, H., Ferrer, M., Ballesteros, A., & Plou, F. J. (2007). Purification and kinetic characterization of a fructosyltransferase from Aspergillus aculeatus. Journal of Biotechnology, 128, 204–211. DOI: 10.1016/j.jbiotec.2006.09.017. http://dx.doi.org/10.1016/j.jbiotec.2006.09.01710.1016/j.jbiotec.2006.09.017Search in Google Scholar

[9] Goulas, A. K., Kapasakalidis, P. G., Sinclair, H. R., Rastall, R. A., & Grandison, A. S. (2002). Purification of oligosaccha-rides by nanofiltration. Journal of Membrane Science, 209, 321–335. DOI: 10.1016/S0376-7388(02)00362-9. http://dx.doi.org/10.1016/S0376-7388(02)00362-910.1016/S0376-7388(02)00362-9Search in Google Scholar

[10] Gramblička, M., & Polakovič, M. (2007). Adsorption equilibria of glucose, fructose, sucrose, and fructooligosaccharides on cation exchange resin. Journal of Chemical & Engineering Data, 52, 345–350. DOI: 10.1021/je060169d. http://dx.doi.org/10.1021/je060169d10.1021/je060169dSearch in Google Scholar

[11] Heinzle, E., Biwer, A. P., & Cooney, C. L. (2006). Development of sustainable bioprocesses. Hoboken: John Wiley & Sons. Search in Google Scholar

[12] Charton, F., & Nicoud, R.-M. (1995). Complete design of a simulated moving bed. Journal of Chromatography A, 702, 97–112. DOI: 10.1016/0021-9673(94)01026-B. http://dx.doi.org/10.1016/0021-9673(94)01026-B10.1016/0021-9673(94)01026-BSearch in Google Scholar

[13] Chen, W. C., & Liu, C. H. (1996). Production of beta-fructofuranosidase by Aspergillus japonicus. Enzyme and Microbial Technology, 18, 153–160. DOI: 10.1016/0141-0229(95)00099-2. http://dx.doi.org/10.1016/0141-0229(95)00099-210.1016/0141-0229(95)00099-2Search in Google Scholar

[14] Chien, C.-S., Lee, W.-C., & Lin, T.-J. (2001). Immobilization of Aspergillus japonicus by entrapping cells in gluten for production of fructooligosaccharides. Enzyme and Microbial Technology, 29, 252–257. DOI: 10.1016/S0141-0229(01)00384-2. http://dx.doi.org/10.1016/S0141-0229(01)00384-210.1016/S0141-0229(01)00384-2Search in Google Scholar

[15] Jung, K. H., Yun, J. W., Kang, K. R., Lim, J. Y., & Lee, J. H. (1989). Mathematical model for enzymatic production of fructo-oligosaccharides from sucrose. Enzyme and Microbial Technology, 11, 491–494. DOI: 10.1016/0141-0229(89)90029-X. http://dx.doi.org/10.1016/0141-0229(89)90029-X10.1016/0141-0229(89)90029-XSearch in Google Scholar

[16] Kim, B. W., Kishihara, S., & Satoshi, F. (1992). Simultaneously continuous separation of glucose,maltose, and maltotriose using a simulated moving-bed adsorbent. Bioscience, Biotechnology, and Biochemistry, 56, 801–802. Search in Google Scholar

[17] L’Hocine, L., Wang, Z., Jiang, B., & Xu, S. (2000). Purification and partial characterization of fructosyltransferase and invertase from Aspergillus niger AS0023. Journal of Biotechnology, 81, 73–84. DOI: 10.1016/S0168-1656(00)00277-7. http://dx.doi.org/10.1016/S0168-1656(00)00277-710.1016/S0168-1656(00)00277-7Search in Google Scholar

[18] L’Homme, C., Puigserver, A., & Biagini, A. (2003). Effect of food-processing on the degradation of fructooligosaccharides in fruit. Food Chemistry, 82, 533–537. DOI:10.1016/S0308-8146(03)00003-7. http://dx.doi.org/10.1016/S0308-8146(03)00003-710.1016/S0308-8146(03)00003-7Search in Google Scholar

[19] Lee, K. J., Choi, J. D., & Lim, J. Y. (1992). Purification and properties of intracellular fructosyl transferase from Aureobasidium pullulans. World Journal of Microbiology & Biotechnology, 8, 411–415. http://dx.doi.org/10.1007/BF0119875610.1007/BF01198756Search in Google Scholar PubMed

[20] Madlová, A., Antošová, M., Baráthová, M., Polakovič, M., Štefuca, V., & Báleš, V. (1999). Screening of microorganisms for transfructosylating activity and optimization of biotransformation of sucrose to fructooligosaccharrides. Chemical Papers, 53, 366–369. Search in Google Scholar

[21] Nguyen, Q. D., Rezessy-Szabo, J. M., Bhat, M. K., & Hoschke, A., (2005). Purification and some properties of [α]-fructofuranosidase from Aspergillus niger IMI303386. Process Biochemistry, 40, 2461–2466. DOI: 10.1016/j.procbio. 2004.09.012. http://dx.doi.org/10.1016/j.procbio.2004.09.01210.1016/j.procbio.2004.09.012Search in Google Scholar

[22] Nizhizawa, K., Nakajima, M., & Nabetani, H. (2001). Kinetic study on transfructosylation by fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membranereactor for fructooligosaccharide production. Food Science and Technology Research, 7, 39–44. http://dx.doi.org/10.3136/fstr.7.3910.3136/fstr.7.39Search in Google Scholar

[23] Onderková, Z., Polakovič, M., Štefuca, V., Vandákova, M., & Antošová, M. (2006). Selection of carrier for immobilization of fructosyltransferase from Aureobasidium pullulans. Chemical Papers, 60, 469–472. DOI: 10.2478/s11696-006-0085-x. http://dx.doi.org/10.2478/s11696-006-0085-x10.2478/s11696-006-0085-xSearch in Google Scholar

[24] Rivero-Urgell, M., & Santamaria-Orleans, A. (2001). Oligosac-charides: application in infant food. Early Human Development, 65(Supplement 2), 43–52. DOI: 10.1016/S0378-3782(01)00202-X. http://dx.doi.org/10.1016/S0378-3782(01)00202-X10.1016/S0378-3782(01)00202-XSearch in Google Scholar

[25] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004). Production of fructo-oligosaccharides by fructosyltransferase from Aspergillus oryzea CFR 202 and Aureobasidium pullulans CFR 77. Process Biochemistry, 39, 755–760. DOI: 10.1016/S0032-9592(03)00186-9. http://dx.doi.org/10.1016/S0032-9592(03)00186-910.1016/S0032-9592(03)00186-9Search in Google Scholar

[26] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005a). Recent trends in the microbial production, analysis and application of fructooligosaccharides. Trends in Food Science & Technology, 16, 442–457. DOI: 10.1016/j.tifs.2005.05.003. http://dx.doi.org/10.1016/j.tifs.2005.05.00310.1016/j.tifs.2005.05.003Search in Google Scholar

[27] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005b). Maximization of fructooligosaccharide production by two stage continuous process and its scale up. Journal of Food Engineering, 68, 57–64. DOI: 10.1016/j.jfoodeng.2004.05.022. http://dx.doi.org/10.1016/j.jfoodeng.2004.05.02210.1016/j.jfoodeng.2004.05.022Search in Google Scholar

[28] Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005c). Fructooligosaccharide production using fructosyl transferase obtained from recycling culture of Aspergillus oryzae CFR 202. Process Biochemistry, 40, 1085–1088. DOI: 10.1016/j. procbio.2004.03.009. http://dx.doi.org/10.1016/j.procbio.2004.03.00910.1016/j.procbio.2004.03.009Search in Google Scholar

[29] Spiegel, J. E., Rose, R., Karabell, P. Frankos, V. H., & Schmitt, D. F. (1994). Safety and benefits of fructooligosaccharides as food ingredients. Food Technology, 48, 85–89. Search in Google Scholar

[30] Takahashi, Y., & Goto, S. (1994). Continuous separation of fructooligosaccharides using an annular chromatograph. Separation Science and Technology, 29, 1311–1318. DOI: 10.1080/01496399408006942. http://dx.doi.org/10.1080/0149639940800694210.1080/01496399408006942Search in Google Scholar

[31] Tanriseven, A., & Aslan, Y. (2005). Immobilization of Pectinex Ultra SP-L to produce fructooligosaccharides. Enzyme and Microbial Technology, 36, 550–554. DOI: 10.1016/j.enzmictec. 2004.12.001. http://dx.doi.org/10.1016/j.enzmictec.2004.12.00110.1016/j.enzmictec.2004.12.001Search in Google Scholar

[32] Vandáková, M., Platková, Z., Antošová, M., Báleš, V., & Polakovič, M., (2004). Optimization of cultivation conditions for production of fructosyltransferase by Aureobasidium pullulans. Chemical Papers, 58, 15–22. Search in Google Scholar

[33] Vandáková, M., Vaňková, K., Juraščík, M., Annus, J., Minárik, M., & Polakovič, M. (2007). Fructosyltransferase production and isolation in semi-pilot scale. In Proceedings of the 34th International Conference of the Slovak Society of Chemical Engineering, 21–25 May 2007. Tatranské Matliare, Slovakia: Slovak Society of Chemical Engineering. Search in Google Scholar

[34] Vaňková, K., Antošová, M., & Polakovič, M., (2005). Design and economics of industrial production of fructosyltransferase. Chemical Papers, 59, 441–448. Search in Google Scholar

[35] Vente, J. A. (2005). Adsorbent functionality in relation to selectivity and capacity in oligosaccharide separations. PhD. Thesis, University of Twente, the Netherlands. Search in Google Scholar

[36] Yun, J. W. (1996). Fructooligosaccharides-Occurrence, preparation, and application. Enzyme and Microbial Technology, 19, 107–117. DOI: 10.1016/0141-0229(95)00188-3. http://dx.doi.org/10.1016/0141-0229(95)00188-310.1016/0141-0229(95)00188-3Search in Google Scholar

[37] Yun, J. W., Kim, D. H., Kim, B. W., & Song, S. K. (1997). Comparison of sugar compositions between inulo-and fructo-oligosacharides produced by different enzymes forms. Biotechnology Letters, 19, 553–556. DOI: 10.1023/A: 1018393505192. http://dx.doi.org/10.1023/A:101839350519210.1023/A:1018393505192Search in Google Scholar

[38] Yun J. W., Lee, M., G., & Song, S. K., (1994). Batch production of high-content fruto-oligosaccharides from sucrose by the mixed-enzyme system of β-fructofuranosidase and glucose oxidase. Journal of Fermentation and Bio engineering, 77, 159–163. DOI: 10.1016/0922-338X(94)90316-6. http://dx.doi.org/10.1016/0922-338X(94)90316-610.1016/0922-338X(94)90316-6Search in Google Scholar

Published Online: 2008-6-30
Published in Print: 2008-8-1

© 2008 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-008-0034-y/html
Scroll to top button