Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 14, 2010

Polyamidoamine dendrimer and dextran conjugates: preparation, characterization, and in vitro and in vivo evaluation

  • Prabhat Shrivastava EMAIL logo , Royana Singh and Sushant Shrivastava
From the journal Chemical Papers

Abstract

Amide and ester conjugates of aceclofenac with polyamidoamine (PAMAM-G0) dendrimer zero generation and dextran (40 kDa) polymeric carrier, respectively, are presented. The prepared conjugates were characterized by UV, TLC, HPLC, IR, and 1H NMR spectroscopy. The average degrees of substitution of amide and ester conjugates were determined and found to be (12.5 ± 0.24) % and (7.5 ± 0.25) %, respectively. The in vitro hydrolysis studies showed that dextran ester conjugate hydrolyzed faster in a phosphate buffer solution of pH 9.0 as compared to PAMAM dendrimer G0 amide conjugate, and followed the first order kinetics. No amount of the drug was regenerated at pH 1.2 in simulated gastric fluid. The dextran conjugate showed short half-life as compared to the PAMAM dendrimer conjugate. Anti-inflammatory and analgesic activities of the dendrimer conjugate were found to be similar to those of the standard drug. Results of chronic ulceroginic activity showed deep ulceration and high ulcer index for aceclofenac, whereas lower ulcer index was found for the PAMAM dendrimer and dextran (40 kDa) conjugates. Experimental data suggest that PAMAM dendrimer and dextran (40 kDa) can be used as carriers for the sustained delivery of aceclofenac along with a remarkable reduction in gastrointestinal toxicity.

[1] Asthana, A., Chauhan, A. S., Diwan, P. V., & Jain, N. K. (2005). Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech, 6, E535–E542. DOI: 10.1208/pt060367. http://dx.doi.org/10.1208/pt06036710.1208/pt060367Search in Google Scholar

[2] Burkhard, H., Thomas, R., Daniel, A., Ulrike, W., Robert, R., Stephan, R., & Kay, B. (2003). Aceclofenac spares cyclooxygenase-1 as a result of limited but sustained biotransformation to diclofenac. Journal of Clinical Pharmacy and Therapeutics, 74, 222–235. DOI: 10.1016/S0009- 9236(03)00167-X. http://dx.doi.org/10.1016/S0009-9236(03)00167-X10.1016/S0009-9236(03)00167-XSearch in Google Scholar

[3] Chauhan, A. S., Diwan, P. V., Jain, N. K., & Tomalia, D. A. (2009). Unexpected in vivo anti-inflammatory activity observed for simple, surface functionalized poly(amidoamine) dendrimers. Biomacromolecules, 10, 1195–1202. DOI: 10.1021/bm9000298. http://dx.doi.org/10.1021/bm900029810.1021/bm9000298Search in Google Scholar PubMed

[4] Cheng, Y., Gao, Y., Rao, T., Li, Y., & Xu, T. (2007a). Dendrimer-based prodrugs: Design, synthesis, screening and biological evaluation. Combinatorial Chemistry & High Throughput Screening, 10, 336–349. DOI: 10.2174/138620707781662808. http://dx.doi.org/10.2174/13862070778166280810.2174/138620707781662808Search in Google Scholar PubMed

[5] Cheng, Y., Man, N., Xu, T., Fu, R., Wang, X., Wang, X., & Wen, L. (2007b). Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. Journal of Pharmaceutical Sciences, 96, 595–602. DOI: 10.1002/jps.20745. http://dx.doi.org/10.1002/jps.2074510.1002/jps.20745Search in Google Scholar PubMed

[6] Cheng, Y., & Xu, T. (2008). The effect of dendrimers on the pharmacodynamic and pharmacokinetic behaviors of noncovalently or covalently attached drugs. European Journal of Medicinal Chemistry, 43, 2291–2297. DOI: 10.1016/j.ejmech.2007.12.021. http://dx.doi.org/10.1016/j.ejmech.2007.12.02110.1016/j.ejmech.2007.12.021Search in Google Scholar PubMed

[7] Cheng, Y., & Xu, T. (2005). Dendrimers as potential drug carriers. Part I. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers. European Journal of Medicinal Chemistry, 40, 1188–1192. DOI:10.1016/j.ejmech.2005.06.010. http://dx.doi.org/10.1016/j.ejmech.2005.03.00910.1016/j.ejmech.2005.06.010Search in Google Scholar PubMed

[8] Cheng, Y., Xu, T., & Fu, R. (2005). Polyamidoamine dendrimers used as solubility enhancers of ketoprofen. European Journal of Medicinal Chemistry, 40, 1390–1393. DOI:10.1016/j.ejmech.2005.08.002. http://dx.doi.org/10.1016/j.ejmech.2005.03.00910.1016/j.ejmech.2005.08.002Search in Google Scholar PubMed

[9] Cheng, Y., Xu, Z., Ma, M., & Xu, T. (2008). Dendrimer as drug carrier: Application in different routes of drug administration. Journal of Pharmaceutical Sciences, 97, 123–143. DOI: 10.1002/jps.21079. http://dx.doi.org/10.1002/jps.2107910.1002/jps.21079Search in Google Scholar PubMed

[10] Davies, O. L., Raventós, J., & Walpole, A. L. (1946). A method for the evaluation of analgesic activity using rats. British Journal of Pharmacology, 1, 255–264. Search in Google Scholar

[11] Feldman, M., & McMahon, A. T. (2000). Do cyclooxygenase-2 inhibitors provide benefits similar to those of traditional nonsteroidal anti-inflammatory drugs, with less gastrointestinal toxicity? Annals of Internal Medicine, 132, 134–143. 10.7326/0003-4819-132-2-200001180-00008Search in Google Scholar PubMed

[12] Gajbhiye, V., Kumar, P. V., Tekade, R. K., & Jain, N. K. (2009). PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. European Journal of Medicinal Chemistry, 44, 1155–1166. DOI: 10.1016/j.ejmech.2008.06.012. http://dx.doi.org/10.1016/j.ejmech.2008.06.01210.1016/j.ejmech.2008.06.012Search in Google Scholar PubMed

[13] Giannuzzo, M., Corrente, F., Feeney, M., Paoletti, L., Paolicelli, P., Tita, B., Vitali, F., & Casadei, M. A. (2008). pH-Sensitive hydrogels of dextran: Synthesis, characterization and in vivo studies. Journal of Drug Targeting, 16, 649–659. DOI: 10.1080/10611860802201191. http://dx.doi.org/10.1080/1061186080220119110.1080/10611860802201191Search in Google Scholar PubMed

[14] Gierse, J. K., Koboldt, C. M., Walker, M. C., Seibert, K., & Isakson, P. C. (1999). Kinetic basis for selective inhibition of cyclo-oxygenases. Biochemical Journal, 339, 607–614. DOI:10.1042/0264-6021:3390607. http://dx.doi.org/10.1042/0264-6021:339060710.1042/0264-6021:3390607Search in Google Scholar

[15] Gurdag, S., Khandare, J., Stapels, S., Matherly, L. H., & Kannan, R. M. (2006). Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and -resistant cell lines. Bioconjugate Chemistry, 17, 275–283. DOI: 10.1021/bc0501855. http://dx.doi.org/10.1021/bc050185510.1021/bc0501855Search in Google Scholar PubMed

[16] Hoste, K., De Winne, K., & Schacht, E. (2004). Polymeric prodrugs. International Journal of Pharmaceutics, 277, 119–131. DOI: 10.1016/j.ijpharm.2003.07.016. http://dx.doi.org/10.1016/j.ijpharm.2003.07.01610.1016/j.ijpharm.2003.07.016Search in Google Scholar PubMed

[17] Jung, Y. J., Lee, J. S., Kim, H. H., Kim, Y. T., & Kim, Y. M. (1998). Synthesis and properties of dextran-5-aminosalicyclic acid ester as a potential colon-specific prodrug of 5-aminosalicyclic acid. Archives of Pharmacal Research, 21, 179–186. http://dx.doi.org/10.1007/BF0297402510.1007/BF02974025Search in Google Scholar PubMed

[18] Khandare, J., & Minko, T. (2006). Polymer-drug conjugates: Progress in polymeric prodrugs. Progress in Polymer Science, 31, 359–397. DOI: 10.1016/j.progpolymsci.2005.09.004. http://dx.doi.org/10.1016/j.progpolymsci.2005.09.00410.1016/j.progpolymsci.2005.09.004Search in Google Scholar

[19] Larsen, C. (1990). Dextran prodrugs—Physicochemical and chemical aspects in relation to in-vivo properties. Unpublished DSc. thesis. Copenhagen, Denmark: Villadsen & Christensen. Search in Google Scholar

[20] Larsen, C., Harboe, E., Johansen, M., & Olesen, H. P. (1989). Macromolecular prodrugs. XVI. Colon-targeted delivery—comparison of the rate of release of naproxen from dextran ester prodrugs in homogenates of various segments of the pig gastrointestinal (GI) tract. Pharmaceutical Research, 6, 995–999. DOI: 10.1023/A:1015914101233. http://dx.doi.org/10.1023/A:101591410123310.1023/A:1015914101233Search in Google Scholar

[21] Lee, J. S., Jung, Y. J., Doh, M. J., & Kim, Y. M. (2001). Synthesis and properties of dextran-nalidixic acid ester as a colon-specific prodrug of nalidixic acid. Drug Development and Industrial Pharmacy, 27, 331–336. DOI: 10.1081/DDC-100103732. http://dx.doi.org/10.1081/DDC-10010373210.1081/DDC-100103732Search in Google Scholar PubMed

[22] Man, N., Cheng, Y., Xu, T., Ding, Y., Wang, X., Li, Z., Chen, Z., Huang, G., Shi, Y., & Wen, L. (2006). Dendrimers as potential drug carriers. Part II. Prolonged delivery of ketoprofen by in vitro and in vivo studies. European Journal of Medicinal Chemistry, 41, 670–674. DOI: 10.1016/j.ejmech.2006.01.001. http://dx.doi.org/10.1016/j.ejmech.2006.01.00110.1016/j.ejmech.2006.01.001Search in Google Scholar PubMed

[23] Mehvar, R. (2000). Dextrans for targeted and sustained delivery of therapeutic and imaging agents. Journal of Controlled Release, 69, 1–25. DOI: 10.1016/S0168-3659(00)00302-3. http://dx.doi.org/10.1016/S0168-3659(00)00302-310.1016/S0168-3659(00)00302-3Search in Google Scholar

[24] Mehvar, R. (1999). Simultaneous analysis of dextran-methylprednisolone succinate methylprednisolone succinate, and methylprednisolone by size-exclusion chromatography. Journal of Pharmaceutical and Biomedical Analysis, 19, 785–792. DOI: 10.1016/S0731-7085(98)00308-2. http://dx.doi.org/10.1016/S0731-7085(98)00308-210.1016/S0731-7085(98)00308-2Search in Google Scholar

[25] Mehvar, R., Robinson, M. A., & Reynolds, J. M. (1994). Molecular weight dependent tissue accumulation of dextrans: in vivo studies in rats. Journal of Pharmaceutical Sciences, 83, 1495–1499. DOI: 10.1002/jps.2600831024. http://dx.doi.org/10.1002/jps.260083102410.1002/jps.2600831024Search in Google Scholar

[26] Musmade, P., Subramanian, G., & Srinivasan, K. K. (2007). High-performance liquid chromatography and pharmacokinetics of aceclofenac in rats. Analytica Chimica Acta, 585, 103–109. DOI: 10.1016/j.aca.2006.11.080. http://dx.doi.org/10.1016/j.aca.2006.11.08010.1016/j.aca.2006.11.080Search in Google Scholar

[27] Najlah, M., Freeman, S., Attwood, D., & D’Emanuele, A. (2006). Synthesis, characterization and stability of dendrimer prodrugs. International Journal of Pharmaceutics, 308, 175–182. DOI: 10.1016/j.ijpharm.2005.10.033. http://dx.doi.org/10.1016/j.ijpharm.2005.10.03310.1016/j.ijpharm.2005.10.033Search in Google Scholar

[28] Rainsford, K. D. (1975). A synergistic interaction between aspirin, or other non-steroidal anti-inflammatory drugs, and stress which produces severe gastric mucosal damage in rats and pigs. Agents actions, 5, 553–558. DOI:10.1007/BF01972694. http://dx.doi.org/10.1007/BF0197269410.1007/BF01972694Search in Google Scholar

[29] Semble, E. L., Wu, W. C. (1987). Antiinflammatory drugs and gastric mucosal damage. Seminars in Arthritis and Rheumatism, 16, 271–286. DOI: 10.1016/0049-0172(87)90005-9. http://dx.doi.org/10.1016/0049-0172(87)90005-910.1016/0049-0172(87)90005-9Search in Google Scholar

[30] Shrivastava, S. K., Jain, D. K., & Trivedi, P. (2003a). Dextranspotential polymeric drug carriers for suprofen. Die Pharmazie, 58, 804–806. Search in Google Scholar

[31] Shrivastava, S. K., Jain, D. K., & Trivedi, P. (2003b). Dextranspotential polymeric drug carriers for flurbiprofen. Die Pharmazie, 58, 389–391. Search in Google Scholar

[32] Shrivastava, S. K., Shrivastava, P. K., Jain, D. K., Trivedi, P. (2009). Flurbiprofen- and suprofen-dextran conjugates: Synthesis, characterization and biological evaluation. Tropical Journal of Pharmaceutical Research, 8, 221–229. 10.4314/tjpr.v8i3.44537Search in Google Scholar

[33] Svenson, S., & Tomalia, D. A. (2005). Dendrimers in biomedical applications—reflections on the field. Advanced Drug Delivery Reviews, 57, 2106–2129. DOI: 10.1016/j.addr.2005.09.018. http://dx.doi.org/10.1016/j.addr.2005.09.01810.1016/j.addr.2005.09.018Search in Google Scholar PubMed

[34] Sweetman, S. C. (2007). Martindale: The complete drug reference (35th ed., pp. 11–12). London, UK: Pharmaceutical Press. Search in Google Scholar

[35] Tomalia, D. A., & Fréchet, J. M. (2005). Introduction to “dendrimers and dendritic polymers”. Progress in Polymer Science, 30, 217–219. DOI: 10.1016/j.progpolymsci.2005.03.003. http://dx.doi.org/10.1016/j.progpolymsci.2005.03.00310.1016/j.progpolymsci.2005.03.003Search in Google Scholar

[36] Tomalia, D. A., Naylor, A. M., & Goddard, W. A. (1990). Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angewandte Chemie International Edition, 29, 138–175. DOI: 10.1002/anie.199001381. http://dx.doi.org/10.1002/anie.19900138110.1002/anie.199001381Search in Google Scholar

[37] Vane, J. (1994). Towards a better aspirin. Nature, 367, 215–216. DOI: 10.1038/367215a0. http://dx.doi.org/10.1038/367215a010.1038/367215a0Search in Google Scholar PubMed

[38] Warner, T. D., Giuliano, F., Vojnovic, I., Bukasa, A., Mitchell, J. A., & Vane, J. R. (1999). Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: A full in vitro analysis. Proceedings of the National Academy of Sciences, 96, 7563–7568. http://dx.doi.org/10.1073/pnas.96.13.756310.1073/pnas.96.13.7563Search in Google Scholar PubMed PubMed Central

[39] Winter, C. A., Risley, E. A., & Nuss, G.W. (1962). Carrageenan induced oedema in the hind paw of the rat as an assay for anti-inflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine, 111, 544–547. 10.3181/00379727-111-27849Search in Google Scholar PubMed

Published Online: 2010-8-14
Published in Print: 2010-10-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-010-0042-6/html
Scroll to top button