Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 16, 2011

Layered double hydroxides — multifunctional nanomaterials

  • Birgül Zümreoglu-Karan EMAIL logo and Ahmet Ay
From the journal Chemical Papers

Abstract

Layered double hydroxides (LDH’s), also known as anionic clays, are lamellar inorganic solids. The structure of most of them corresponds to that of mineral hydrotalcite, consisting of brucite-like hydroxide sheets, where partial substitution of trivalent or divalent cations results in a positive sheet charge compensated by reversibly exchangeable anions within interlayer galleries. These layered materials have good intercalation properties capturing inorganic and organic ions and they are promising materials for a large number of practical applications, both for direct preparation and for after thermal treatment.

Over the past decade, significant interest has been devoted to the synthesis of LDHs with new compositions allowing improved applications in many areas. This contribution reviews the recent advances in water treatment, nuclear waste treatment/storage, catalytic, industrial, and advanced applications and biomedical applications of LDH-based nanomaterials.

[1] Ahmed, N., Shibata, Y., Taniguchi, T., & Izumi, Y. (2011). Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M = aluminum, gallium) layered double hydroxides. Journal of Catalysis, 279, 123–135. DOI: 10.1016/j.jcat.2011.01.004. http://dx.doi.org/10.1016/j.jcat.2011.01.00410.1016/j.jcat.2011.01.004Search in Google Scholar

[2] Aisawa, S., Sasaki, S., Takahashi, S., Hirahara, H., Nakayama, H., & Narita, E. (2006). Intercalation of amino acids and oligopeptides into Zn-Al layered double hydroxide by coprecipitation reaction. Journal of the Physics and Chemistry of Solids, 67, 920–925. DOI: 10.1016/j.jpcs.2006.01.004. http://dx.doi.org/10.1016/j.jpcs.2006.01.00410.1016/j.jpcs.2006.01.004Search in Google Scholar

[3] Almansa, J. J., Coronado, E., Martí-Gastaldo, C., & Ribera, A. (2008). Magnetic properties of NiII CrIII layered double hydroxide materials. European Journal of Inorganic Chemistry, 2008, 5642–5648. DOI: 10.1002/ejic.200800658. http://dx.doi.org/10.1002/ejic.20080065810.1002/ejic.200800658Search in Google Scholar

[4] Ambrogi, V., Fardella, G., Grandolini, G., & Perioli, L. (2001). Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents — I. Intercalation and in vitro release of ibuprofen. International Journal of Pharmaceutics, 220, 23–32. DOI: 10.1016/S0378-5173(01)00629-9. http://dx.doi.org/10.1016/S0378-5173(01)00629-910.1016/S0378-5173(01)00629-9Search in Google Scholar

[5] Ambrogi, V., Fardella, G., Grandolini, G., Perioli, L., & Tiralti, M. C. (2002). Intercalation compounds of hydrotalcitelike anionic clays with antiinflammatory agents, II. Uptake of diclofenac for a controlled release formulation. Journal of Pharmaceutical Science and Technology, 3, 1–6. DOI: 10.1208/pt030326. 10.1208/pt030326Search in Google Scholar PubMed PubMed Central

[6] Antonyraj, C. A., & Kannan, S. (2011). Influence of co-bivalent ions in Cu-containing LDHs and solvent on hydroxylation of benzene to phenol. Applied Clay Science, 53, 297–304. DOI: 10.1016/j.clay.2011.01.024. http://dx.doi.org/10.1016/j.clay.2011.01.02410.1016/j.clay.2011.01.024Search in Google Scholar

[7] Ay, A. N., Konuk, D., & Zümreoğlu-Karan, B. (2011a). Magnetic nanocomposites with drug-intercalated layered double hydroxide shell supported on commercial magnetite and laboratory-made magnesium ferrite core materials. Materials Science and Engineering: C, 31, 851–857. DOI: 10.1016/j.msec.2011.01.007. http://dx.doi.org/10.1016/j.msec.2011.01.00710.1016/j.msec.2011.01.007Search in Google Scholar

[8] Ay, A. N., Konuk, D., & Zümreoglu-Karan, B. (2011b). Prolate spheroidal hematite particles equatorially belt with drugcarrying layered double hydroxide disks: Ring nebula-like nanocomposites. Nanoscale Research Letters, 6, 116–120. DOI: 10.1186/1556-276X-6-116. http://dx.doi.org/10.1186/1556-276X-6-11610.1186/1556-276X-6-116Search in Google Scholar PubMed PubMed Central

[9] Ay, A. N., Zümreoglu-Karan, B., & Temel, A. (2007). Boron removal by hydrotalcite-like, carbonate-free Mg-Al-NO3-LDH and a rationale on the mechanism. Microporous and Mesoporous Materials, 98, 1–5. DOI: 10.1016/j.micromeso.2006.08.004. http://dx.doi.org/10.1016/j.micromeso.2006.08.00410.1016/j.micromeso.2006.08.004Search in Google Scholar

[10] Ay, A. N., Zümreoglu-Karan, B., Temel, A., & Mafra, L. (2011c). Layered double hydroxides with interlayer borate anions: A critical evaluation of synthesis methodology and pH-independent orientations in nano-galleries. Applied Clay Science, 51, 308–316. DOI: 10.1016/j.clay.2010.12.015. http://dx.doi.org/10.1016/j.clay.2010.12.01510.1016/j.clay.2010.12.015Search in Google Scholar

[11] Ay, A. N., Zümreoglu-Karan, B., Temel, A., & Rives, V. (2009). Bioinorganic magnetic core- shell nanocomposites carrying antiarthritic agents: Intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite. Inorganic Chemistry, 48, 8871–8877. DOI: 10.1021/ic901097a. http://dx.doi.org/10.1021/ic901097a10.1021/ic901097aSearch in Google Scholar

[12] Basile, F., Benito, P., Fornasari, G., & Vaccari, A. (2010). Hydrotalcite-type precursors of active catalysts for hydrogen production. Applied Clay Science, 48, 250–259. DOI: 10.1016/j.clay.2009.11.027. http://dx.doi.org/10.1016/j.clay.2009.11.02710.1016/j.clay.2009.11.027Search in Google Scholar

[13] Basile, F., & Vaccari, A. (2001). Applications of hydrotalcitetype anionic clays (layered double hydroxides) in catalysis. In V. Rives (Ed.), Layered double hydroxides: Present and future (pp. 323–365). New York, NY, USA: Nova Science Publishers. Search in Google Scholar

[14] Benaissi, K., Hélaine, V., Prévot, V., Forano, C., & Hecquet, L. (2011). Efficient immobilization of yeast transketolase on layered double hydroxides and application for ketose synthesis. Advanced Synthesis & Catalysis, 353, 1497–1509. DOI: 10.1002/adsc.201000925 http://dx.doi.org/10.1002/adsc.20100092510.1002/adsc.201000925Search in Google Scholar

[15] Bouraada, M., Belhalfaoui, F., Ouali, M. S., & de Ménorval, L. C. (2009). Sorption study of an acid dye from an aqueous solution on modified Mg-Al layered double hydroxides. Journal of Hazardous Materials, 163, 463–467. DOI: 10.1016/j.jhazmat.2008.06.108. http://dx.doi.org/10.1016/j.jhazmat.2008.06.10810.1016/j.jhazmat.2008.06.108Search in Google Scholar

[16] Bouraada, M., Lafjah, M., Ouali, M. S., & de Menorval, L. C. (2008). Basic dye removal from aqueous solutions by dodecylsulfate- and dodecyl benzene sulfonate-intercalated hydrotalcite. Journal of Hazardous Materials, 153, 911–918. DOI: 10.1016/j.jhazmat.2007.09.076. http://dx.doi.org/10.1016/j.jhazmat.2007.09.07610.1016/j.jhazmat.2007.09.076Search in Google Scholar

[17] Brito, A., Borges, M. E., Garın, M., & Hernández, A. (2009). Biodiesel production from waste oil using Mg-Al layered double hydroxide catalysts. Energy & Fuels, 23, 2952–2958. DOI: 10.1021/ef801086p. http://dx.doi.org/10.1021/ef801086p10.1021/ef801086pSearch in Google Scholar

[18] Bugatti, V., Gorrasi, G., Montanari, F., Nochetti, M., Tammaro, L., & Vittoria, V. (2011). Modified layered double hydroxides in polycaprolactone as tunable delivery system: in vitro release of antimicrobial benzoate derivatives. Applied Clay Science, 52, 34–40. DOI: 10.1016/j.clay.2011.01.025. http://dx.doi.org/10.1016/j.clay.2011.01.02510.1016/j.clay.2011.01.025Search in Google Scholar

[19] Bujdák, J., & Iyi, N. (2008). Spectral properties of tetraanionic porphyrin in formamide colloids of layered double hydroxides. Central European Journal of Chemistry, 6, 569–574. DOI: 10.2478/s11532-008-0074-8. http://dx.doi.org/10.2478/s11532-008-0074-810.2478/s11532-008-0074-8Search in Google Scholar

[20] Carja, G., Chiriac, H., & Lupu, N. (2007). New magnetic organic-inorganic composites based on hydrotalcite-like anionic clays for drug delivery. Journal of Magnetism and Magnetic Materials, 311, 26–30. DOI: 10.1016/j.jmmm.2006.11.161. http://dx.doi.org/10.1016/j.jmmm.2006.11.16110.1016/j.jmmm.2006.11.161Search in Google Scholar

[21] Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcitetype anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173–301. DOI: 10.1016/0920-5861(91)80068-K. http://dx.doi.org/10.1016/0920-5861(91)80068-K10.1016/0920-5861(91)80068-KSearch in Google Scholar

[22] Chao, Y. F., Chen, P. C., & Wang, S. L. (2008). Adsorption of 2,4-D on Mg/Al-NO3 layered double hydroxides with varying layer charge density. Applied Clay Science, 40, 193–200. DOI: 10.1016/j.clay.2007.09.003. http://dx.doi.org/10.1016/j.clay.2007.09.00310.1016/j.clay.2007.09.003Search in Google Scholar

[23] Chen, D., Huang, S., Zhang, C., Wang, W., & Liu, T. (2010a). Layer-by-layer self-assembly of polyimide precursor/layered double hydroxide ultrathin films. Thin Solid Films, 518, 7081–7085. DOI: 10.1016/j.tsf.2010.05.121. http://dx.doi.org/10.1016/j.tsf.2010.05.12110.1016/j.tsf.2010.05.121Search in Google Scholar

[24] Chen, D., Wang, X., Liu, T., Wang, X., & Li, J. (2010b). Electrically conductive poly(vinyl alcohol) hybrid films containing graphene and layered double hydroxide fabricated via layer-by-layer self-assembly. Applied Materials & Interfaces, 2, 2005–2011. DOI: 10.1021/am100307v. http://dx.doi.org/10.1021/am100307v10.1021/am100307vSearch in Google Scholar

[25] Chitrakar, R., Makita, Y., Sonoda, A., & Hirotsu, T. (2011). Fe-Al layered double hydroxides in bromate reduction: Synthesis and reactivity. Journal of Colloid and Interface Science, 354, 798–803. DOI: 10.1016/j.jcis.2010.11.010. http://dx.doi.org/10.1016/j.jcis.2010.11.01010.1016/j.jcis.2010.11.010Search in Google Scholar

[26] Chitrakar, R., Tezuka, S., Hosokawa, J., Makita, Y., Sonoda, A., Ooi, K., & Hirotsu, T. (2010). Uptake properties of phosphate on a novel Zr-modified MgFe-LDH(CO3). Journal of Colloid and Interface Science, 349, 314–320. DOI: 10.1016/j.jcis.2010.05.068. http://dx.doi.org/10.1016/j.jcis.2010.05.06810.1016/j.jcis.2010.05.068Search in Google Scholar

[27] Choy, H., & Park, M. (2004). Cationic and anionic clays for biological applications. In F. Wypych, & K. G. Satyanarayana (Eds.), Clay surfaces: Fundamentals and applications (pp. 403–424). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/S1573-4285(04)80049-8. http://dx.doi.org/10.1016/S1573-4285(04)80049-810.1016/S1573-4285(04)80049-8Search in Google Scholar

[28] Choy, J. H., Choi, S. J., Oh, J. M., & Park, T. (2007). Clay minerals and layered double hydroxides for novel biological applications. Applied Clay Science, 36, 122–132. DOI: 10.1016/j.clay.2006.07.007. http://dx.doi.org/10.1016/j.clay.2006.07.00710.1016/j.clay.2006.07.007Search in Google Scholar

[29] Choy, J. H., Kwak, S. Y., Park, J. S., & Jeong, Y. J. (2001). Cellular uptake behavior of [γ-32P] labeled ATP-LDH nanohybrids. Journal of Materials Chemistry, 11, 1671–1674. DOI: 10.1039/B008680K. http://dx.doi.org/10.1039/b008680k10.1039/b008680kSearch in Google Scholar

[30] Choy, J. H., Park, M., & Oh, J. M. (2006). Bio-nanohybrids based on layered double hydroxide. Current Nanoscience, 2, 275–281. 10.2174/1573413710602030275Search in Google Scholar

[31] Choy, J. H., & Son, Y. H. (2004). Intercalation of vitamer into LDH and their controlled release properties. Bulletin of the Korean Chemical Society, 25, 122–126. DOI: 10.5012/bkcs.2004.25.1.122. http://dx.doi.org/10.5012/bkcs.2004.25.1.12210.5012/bkcs.2004.25.1.122Search in Google Scholar

[32] Chuang, Y. H., Tzou, Y. M., Wang, M. K., Liu, C. H., & Chiang, P. N. (2008). Removal of 2-chlorophenol from aqueous solution byMg/Al layered double hydroxide (LDH) and modified LDH. Industrial & Engineering Chemistry Research, 47, 3813–3819. DOI: 10.1021/ie071508e. http://dx.doi.org/10.1021/ie071508e10.1021/ie071508eSearch in Google Scholar

[33] Clemente-León, M., Coronado, E., Primo, V., Ribera, A., & Soriano-Portillo, A. (2008). HHybrid magnetic materials formed by ferritin intercalated into a layered double hydroxide. Solid State Sciences, 10, 1807–1813. DOI: 10.1016/j.solidstatesciences.2008.02.009. http://dx.doi.org/10.1016/j.solidstatesciences.2008.02.00910.1016/j.solidstatesciences.2008.02.009Search in Google Scholar

[34] Cornejo, J., Celis, R., Pavlovic, I., & Ulibarri, M. A. (2008) Interactions of pesticides with clays and layered double hydroxides: a review. Clay Minerals, 43, 155–175. DOI: 10.1180/claymin.2008.043.2.01. http://dx.doi.org/10.1180/claymin.2008.043.2.0110.1180/claymin.2008.043.2.01Search in Google Scholar

[35] Coronado, E., Galán-Mascarós, J. R., Martí-Gastaldo, C., Ribera, A., Palacios, E., Castro, M., & Burriel, R. (2008). Spontaneous magnetization in Ni-Al and Ni-Fe layered double hydroxides. Inorganic Chemistry, 47, 9103–9110. DOI: 10.1021/ic801123v. http://dx.doi.org/10.1021/ic801123v10.1021/ic801123vSearch in Google Scholar

[36] Costa, F. R., Saphiannikova, M., Wagenknecht, U., & Heinrich, G. (2008). Layered double hydroxide based polymer nanocomposites. Advances in Polymer Science, 210, 101–168. DOI: 10.1007/12 2007 123. http://dx.doi.org/10.1007/12_2007_123Search in Google Scholar

[37] Dagnon, K. L., Ambadapadi, S., Shaito, A., Ogbomo, S. M., DeLeon, V., Golden, T. D., Rahimi, M., Nguyen, K., Braterman, P. S., & D’souza, N. A. (2009). Poly(L-lactic acid) nanocomposites with layered double hydroxides functionalized with ibuprofen. Journal of Applied Polymer Science, 113, 1905–1915. DOI: 10.1002/app.30159. http://dx.doi.org/10.1002/app.3015910.1002/app.30159Search in Google Scholar

[38] del Arco, M., Fernández, A., Martín, C., & Rives, V. (2009). Release studies of different NSAIDs encapsulated in Mg,Al,Fe-hydrotalcites. Applied Clay Science, 42, 538–544. DOI: 10.1016/j.clay.2008.06.014. http://dx.doi.org/10.1016/j.clay.2008.06.01410.1016/j.clay.2008.06.014Search in Google Scholar

[39] Del Hoyo, C. (2007). Layered double hydroxides and human health: An overview. Applied Clay Science, 36, 103–121. DOI: 10.1016/j.clay.2006.06.010. http://dx.doi.org/10.1016/j.clay.2006.06.01010.1016/j.clay.2006.06.010Search in Google Scholar

[40] Duan, X., & Evans, D. G. (2006). Layered double hydroxides. In D. M. P. Mingos (Ed.), Structure and bonding (Vol. 119). Berlin, Germany: Springer. 10.1007/b100426Search in Google Scholar

[41] Evans, D. G., & Duan, X. (2006). Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chemical Communications, 2006, 485–496. DOI: 10.1039/B510313B. http://dx.doi.org/10.1039/b510313b10.1039/B510313BSearch in Google Scholar

[42] Forano, C., Hibino, T., Leroux, F., & Taviot-Guého, C. (2006a). Layered double hydroxides. In F. Bergaya, B. K. G. Theng, & G. Lagaly (Eds.), Handbook of clay science (pp 1021–1095). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/S1572-4352(05)01039-1. http://dx.doi.org/10.1016/S1572-4352(05)01039-110.1016/S1572-4352(05)01039-1Search in Google Scholar

[43] Forano, C., Vial, S., & Mousty, C. (2006b). Nanohybrid enzymes — layered double hydroxides: Potential applications. Current Nanoscience, 2, 283–294. 10.2174/1573413710602030283Search in Google Scholar

[44] French, D., Schifano, P., Cortés-Concepción, J., & Hargrove-Leak, S. (2010). Li-Al layered double hydroxides as catalysts for the synthesis of flavanone. Catalysis Communications, 12, 92–94. DOI: 10.1016/j.catcom.2010.08.021 http://dx.doi.org/10.1016/j.catcom.2010.08.02110.1016/j.catcom.2010.08.021Search in Google Scholar

[45] Gago, S., Costa, T., Seixas de Melo, J., Gonçalves, I. S., & Pillinger, M. (2008) Preparation and photophysical characterisation of Zn-Al layered double hydroxides intercalated by anionic pyrene derivatives. Journal of Materials Chemistry, 18, 894–904. DOI: 10.1039/B715319H. http://dx.doi.org/10.1039/b715319h10.1039/b715319hSearch in Google Scholar

[46] Galejová, K., Obalová, L., Jirátová, K., Pacultová, K., & Kovanda, F. (2009). N2O catalytic decomposition — effect of pelleting pressure on activity of Co-Mn-Al mixed oxide catalysts. Chemical Papers, 63, 172–179. DOI: 10.2478/s11696-008-0105-0. http://dx.doi.org/10.2478/s11696-008-0105-010.2478/s11696-008-0105-0Search in Google Scholar

[47] Goh, K. H., Lim, T. T., & Dong, Z. (2008). Application of layered double hydroxides for removal of oxyanions: A review. Water Research, 42, 1343–1368. DOI: 10.1016/j.watres.2007.10.043. http://dx.doi.org/10.1016/j.watres.2007.10.04310.1016/j.watres.2007.10.043Search in Google Scholar PubMed

[48] Guo, X., Li, Y, Song, W., & Shen, W. (2011). Glycerol hydrogenolysis over Co catalysts derived from a layered double hydroxide precursor. Catalysis Letters, 141, 1458–1463. DOI: 10.1007/s10562-011-0642-y. http://dx.doi.org/10.1007/s10562-011-0642-y10.1007/s10562-011-0642-ySearch in Google Scholar

[49] Halma, M., de Freistas Castro, K. A., Taviot-Gueho, C., Prévot, V., Forano, C., Wypych, F., & Nakagaki, S. (2008). Synthesis, characterization, and catalytic activity of anionic iron(III) porphyrins intercalated into layered double hydroxides. Journal of Catalysis, 257, 233–243. DOI: 10.1016/j.jcat.2008.04.026. http://dx.doi.org/10.1016/j.jcat.2008.04.02610.1016/j.jcat.2008.04.026Search in Google Scholar

[50] Han, J. B., Lu, J., Wei, M., Wang, Z. L., & Duan, X. (2008). Heterogeneous ultrathin films fabricated by alternate assembly of exfoliated layered double hydroxides and polyanion. Chemical Communications, 41, 5188–5190. DOI: 10139/B807479H. http://dx.doi.org/10.1039/b807479h10.1039/b807479hSearch in Google Scholar PubMed

[51] Hansen, B., Curtius, H., & Odoj, R. (2009). Synthesis of a Mg-Cd-Al layered double hydroxide and sorption of selenium. Clays and Clay Minerals, 57, 330–337. DOI: 10.1346/Ccmn.2009.0570305. http://dx.doi.org/10.1346/CCMN.2009.057030510.1346/CCMN.2009.0570305Search in Google Scholar

[52] Hutson, N. D., & Attwood, B. C. (2008). High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 14, 781–789. DOI: 10.1007/s10450-007-9085-6. http://dx.doi.org/10.1007/s10450-007-9085-610.1007/s10450-007-9085-6Search in Google Scholar

[53] Iorio, M., De Martino, A., Violente, A., Pigna, M., & Capasso, R. (2010). Synthesis, characterization, and sorption capacity of layered double hydroxides and their complexes with polymerin. Journal of Agricultural and Food Chemistry, 58, 5523–5530. DOI: 10.1021/jf904092n. http://dx.doi.org/10.1021/jf904092n10.1021/jf904092nSearch in Google Scholar PubMed

[54] Islam, M., & Patel, R. (2010). Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination, 256, 120–128. DOI: 10.1016/j.desal.2010.02.003. http://dx.doi.org/10.1016/j.desal.2010.02.00310.1016/j.desal.2010.02.003Search in Google Scholar

[55] Jin, L., Liu, Q., Sun, Z., Ni, X., & Wei, M. (2010). Preparation of 5-fluorouracil/β-cyclodextrin complex intercalated in layered double hydroxide and the controlled drug release properties. Industrial & Engineering Chemistry Research, 49, 11176–11181. DOI: 10.1021/ie100990z. http://dx.doi.org/10.1021/ie100990z10.1021/ie100990zSearch in Google Scholar

[56] Khan, A. I., Lei, L., Norquist, A. J., & O’Hare, D. (2001). Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chemical Communications, 2001, 2342–2343. DOI: 10.1039/B106465G. http://dx.doi.org/10.1039/b106465g10.1039/b106465gSearch in Google Scholar PubMed

[57] Khan, A. I., Ragavan, A., Fong, B., Markland, C., O’Brien, M., Dunbar, T. G., Williams, G. R., & O’Hare, D. (2009). Recent developments in the use of layered double hydroxides as host materials for the storage and triggered release of functional anions. Industrial & Engineering Chemistry Research, 48, 10196–10205. DOI: 10.1021/ie9012612 http://dx.doi.org/10.1021/ie901261210.1021/ie9012612Search in Google Scholar

[58] Kovanda, F., & Jirátová, K. (2011). Supported layered double hydroxide-related mixed oxides and their application in the total oxidation of volatile organic compounds. Applied Clay Science, 53, 305–316. DOI: 10.1016/j.clay.2010.12.030. http://dx.doi.org/10.1016/j.clay.2010.12.03010.1016/j.clay.2010.12.030Search in Google Scholar

[59] Kuang, Y., Zhao, L., Zhang, S., Zhang, F., Dong, M., & Xu, S. (2010). Morphologies, preparations and applications of layered double hydroxide micro-/nanostructures. Materials, 3, 5220–5235. DOI: 10.3390/ma3125220. http://dx.doi.org/10.3390/ma312522010.3390/ma3125220Search in Google Scholar PubMed PubMed Central

[60] Ladewig, K., Niebert, M., Xu, Z. P., Gray, P. P., & Lu, G. Q. M. (2010). Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. Biomaterials, 31, 1821–1829. DOI: 10.1016/j.biomaterials.2009.10.058. http://dx.doi.org/10.1016/j.biomaterials.2009.10.05810.1016/j.biomaterials.2009.10.058Search in Google Scholar PubMed

[61] Ladewig, K., Xu, Z. P., & Lu, G. Q. (2009). Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opinion on Drug Delivery, 6, 907–922. DOI: 10.1517/17425240903130585. http://dx.doi.org/10.1517/1742524090313058510.1517/17425240903130585Search in Google Scholar PubMed

[62] Latterini, L., Nocchetti, M., Aloisi, G. G., Costantino, U., & Elisei, F. (2007). Organized chromophores in layered inorganic matrices. Inorganica Chimica Acta, 360, 728–740. DOI: 10.1016/j.ica.2006.07.048. http://dx.doi.org/10.1016/j.ica.2006.07.04810.1016/j.ica.2006.07.048Search in Google Scholar

[63] Legrouri, A., Lakraimi, M., Barroug, A., De Roy, A., & Besse, J. P. (2005). Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc-aluminium-chloride layered double hydroxides. Water Research, 39, 3441–3448. DOI: 10.1016/j.watres.2005.03.036. http://dx.doi.org/10.1016/j.watres.2005.03.03610.1016/j.watres.2005.03.036Search in Google Scholar PubMed

[64] Leroux, F., & Besse, J. P. (2001). Polymer interleaved layered double hydoxide: A new emerging class of nanocomposites. Chemistry of Materials, 13, 3507–3515. DOI: 10.1021/cm0110268. http://dx.doi.org/10.1021/cm011026810.1021/cm0110268Search in Google Scholar

[65] Li, F., & Duan, X. (2006). Applications of layered double hydroxides. In X. Duan, & D. G. Evans (Eds.), Structure and bonding, (Vol. 119, pp. 193–223). New York, NY, USA: Springer. DOI: 10.1007/430-007. Search in Google Scholar

[66] Li, F., Jin, L., Han, J., Wei, M., & Li, C. (2009a). Synthesis and controlled release properties of prednisone intercalated Mg-Al layered double hydroxide composite. Industrial & Engineering Chemistry Research, 48, 5590–5597. DOI: 10.1021/ie900043r. http://dx.doi.org/10.1021/ie900043r10.1021/ie900043rSearch in Google Scholar

[67] Li, F., Wang, Y., Yang, Q., Evans, D. G., Forano, C., & Duan, X. (2005a). Study on adsorption of glyphosate (Nphosphonomethyl glycine) pesticide on MgAl-layered double hydroxides in aqueous solution. Journal of Hazardous Materials, 125, 89–95. DOI: 10.1016/j.jhazmat.2005.04.037. http://dx.doi.org/10.1016/j.jhazmat.2005.04.03710.1016/j.jhazmat.2005.04.037Search in Google Scholar PubMed

[68] Li, H., Gang, Z., Liu, Z. H., Yang, Z., & Wang, Z. (2010). Fabrication of a hybrid graphene/layered double hydroxide material. Carbon, 48, 4391–4396. DOI: 10.1016/j.carbon.2010.07.053. http://dx.doi.org/10.1016/j.carbon.2010.07.05310.1016/j.carbon.2010.07.053Search in Google Scholar

[69] Li, L., Feng, Y., Li, Y., Zhao, W., & Shi, J. (2009b). Fe3O4 core/layered double hydroxide shell nanocomposite: Versatile magnetic matrix for anionic functional materials. Angewandte Chemie International Edition, 48, 5888–5892. DOI: 10.1002/anie.200901730. http://dx.doi.org/10.1002/anie.20090173010.1002/anie.200901730Search in Google Scholar PubMed

[70] Li, L., Ma, R., Ebina, Y., Iyi, N., & Sasaki, T. (2005b). Positively charged nanosheets derived from total delamination of layered double hydroxides. Chemistry of Materials, 17, 4386–4391. DOI: 10.1021/cm0510460. http://dx.doi.org/10.1021/cm051046010.1021/cm0510460Search in Google Scholar

[71] Liang, L., & Li, L. (2007). Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants. Journal of Radioanalytical and Nuclear Chemistry, 273, 221–226. DOI: 10.1007/s10967-007-0740-x. http://dx.doi.org/10.1007/s10967-007-0740-x10.1007/s10967-007-0740-xSearch in Google Scholar

[72] Link Shumaker, J., Crofcheck, C., Tackett, S. A., Santillan-Jimenez, E., & Crocker, M. (2007). Biodiesel production from soybean oil using calcined Li-Al layered double hydroxide catalysts. Catalysis Letters, 115, 56–61. DOI: 10.1007/s10562-007-9071-3. http://dx.doi.org/10.1007/s10562-007-9071-310.1007/s10562-007-9071-3Search in Google Scholar

[73] Link Shumaker, J., Crofcheck, C., Tackett, S. A., Santillan-Jimenez, E., Morgan, T., Ji, Y., Crocker, M., & Toops, T. J. (2008). Biodiesel synthesis using calcined layered double hydroxide catalysts. Applied Catalysis B: Environmental, 82, 120–130. DOI: 10.1016/j.apcatb.2008.01.010. http://dx.doi.org/10.1016/j.apcatb.2008.01.01010.1016/j.apcatb.2008.01.010Search in Google Scholar

[74] Liu, M., Yang, J. J., Wu, G. Q., & Wang, L. Y. (2006a). Performance and mechanism of Mg, Al layered double hydroxides and layered double oxides for sulfide anion removal. Chinese Journal of Inorganic Chemistry, 22, 1771–1777. Search in Google Scholar

[75] Liu, P., Wang, C., & Li, C. (2009). Epoxidation of allylic alcohols on self-assembled polyoxometalates hosted in layered double hydroxides with aqueous H2O2 as oxidant. Journal of Catalysis, 262, 159–168. DOI: 10.1016/j.jcat.2008.12.018. http://dx.doi.org/10.1016/j.jcat.2008.12.01810.1016/j.jcat.2008.12.018Search in Google Scholar

[76] Liu, S., Zhou, Q., Jin, Z., Jiang, H., & Jiang, X. (2010). Dodecylsulfate anion embedded layered double hydroxide supported nanopalladium catalyst for the suzuki reaction. Chinese Journal of Catalysis, 31, 557–561. DOI: 10.1016/S1872-2067(09)60072-3. http://dx.doi.org/10.1016/S1872-2067(09)60072-310.1016/S1872-2067(09)60072-3Search in Google Scholar

[77] Liu, Z., Ma, R., Osada, M., Iyi, N., Ebina, Y., Takada, K., & Sasaki, T. (2006b). Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magnetooptical studies. Journal of the American Chemical Society, 128, 4872–4880. DOI: 10.1021/ja0584471. http://dx.doi.org/10.1021/ja058447110.1021/ja0584471Search in Google Scholar

[78] Lotsch, B., Millange, F., Walton, R. I., & O’Hare, D. (2001). Separation of nucleoside monophosphates using preferential anion exchange intercalation in layered double hydroxides. Solid State Sciences, 3, 883–886. DOI: 10.1016/S1293-2558(01)01205-5. http://dx.doi.org/10.1016/S1293-2558(01)01205-510.1016/S1293-2558(01)01205-5Search in Google Scholar

[79] Lukashin, A. V., Vertegel, A. A., Eliseev, A. A., Nikiforov, M. P., Gornert, P., & Tretyakov, Yu. D. (2003). Chemical design of magnetic nanocomposites based on layered double hydroxides. Journal of Nanoparticle Research, 5, 455–464. DOI: 10.1023/B:NANO.0000006087.95385.81. http://dx.doi.org/10.1023/B:NANO.0000006087.95385.8110.1023/B:NANO.0000006087.95385.81Search in Google Scholar

[80] Lv, L., He, J., Wei, M., Evans, D. G., & Duan, X. (2006a). Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides. Journal of Hazardous Materials, 133, 119–128. DOI: 10.1016/j.jhazmat.2005.10.012. http://dx.doi.org/10.1016/j.jhazmat.2005.10.01210.1016/j.jhazmat.2005.10.012Search in Google Scholar PubMed

[81] Lv, L., He, J., Wei, M., Evans, D. G., & Duan, X. (2006b). Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies. Water Research, 40, 735–743. DOI: 10.1016/j.watres.2005.11.043. http://dx.doi.org/10.1016/j.watres.2005.11.04310.1016/j.watres.2005.11.043Search in Google Scholar PubMed

[82] Lv, L., Sun, P., Gu, Y., Du, H., Pang, X., Tao, X., Xu, R., & Xu, L. (2009). Removal of chloride ion from aqueous solution by ZnAl-NO3 layered double hydroxides as anionexchanger. Journal of Hazardous Materials, 161, 1444–1449. DOI: 10.1016/j.jhazmat.2008.04.114. http://dx.doi.org/10.1016/j.jhazmat.2008.04.11410.1016/j.jhazmat.2008.04.114Search in Google Scholar PubMed

[83] Ma, R., Liu, Z., Li, L., Iyi, N., & Sasaki, T. (2006). Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets. Journal of Materials Chemistry, 16, 3809–3813. DOI: 10.1039/B605422F. http://dx.doi.org/10.1039/b605422f10.1039/b605422fSearch in Google Scholar

[84] Manzi-Nshuti, C., Songtipya, P., Manias, E., Jimenez-Gasco, M. M., Hossenlopp, J. M., & Wilkie, C. A. (2009). Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: Effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers. Polymer, 50, 3564–3574. DOI: 10.1016/j.polymer.2009.06.014. http://dx.doi.org/10.1016/j.polymer.2009.06.01410.1016/j.polymer.2009.06.014Search in Google Scholar

[85] Miyata, S. (1983). Anion-exchange properties of hydrotalcitelike compounds. Clays and Clay Minerals, 31, 305–311. http://dx.doi.org/10.1346/CCMN.1983.031040910.1346/CCMN.1983.0310409Search in Google Scholar

[86] Mohanambe, L., & Vasudevan, S. (2004). Insertion of iodine in a functionalized inorganic layered solid. Inorganic Chemistry, 43, 6421–6425. DOI: 10.1021/ic0495721. http://dx.doi.org/10.1021/ic049572110.1021/ic0495721Search in Google Scholar

[87] Oh, J. M., Biswick, T. T., & Choy, J. H. (2009). Layered nanomaterials for green materials. Journal of Materials Chemistry, 19, 2553–2563. DOI: 10.1039/b819094A. http://dx.doi.org/10.1039/b819094a10.1039/b819094aSearch in Google Scholar

[88] Oliveira, E. L. G., Grande, C. A., & Rodrigues, A. E. (2008). CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. Separation and Purification Technology, 62, 137–147. DOI: 10.1016/j.seppur.2008.01.011. http://dx.doi.org/10.1016/j.seppur.2008.01.01110.1016/j.seppur.2008.01.011Search in Google Scholar

[89] Peterson, C. L., Perry, D. L., Masood, H., Lin, H., White, J. L., Hem, S. L., Fritsch, C., & Haeusler, F. (1993). Characterization of antacid compounds containing both aluminium and magnesium. I. Crystalline powders. Pharmaceutical Research, 10, 998–1004. DOI: 10.1023/A:1018958621782. http://dx.doi.org/10.1023/A:101895862178210.1023/A:1018958621782Search in Google Scholar

[90] Phillips, J. D., & Vandeperre, L. J. (2010a). Designing wasteforms for technetium: anion capture with layered double hydroxides. In DIAMOND’10 Conference: Decommissioning, immobilisation and management of nuclear waste for disposal, December 15–16, 2010 (pp. 1–4). Manchester, UK. Search in Google Scholar

[91] Phillips, J. D., & Vandeperre, L. J. (2010b). Anion capture with calcium, aluminium and iron containing layered double hydroxides. Journal of Nuclear Materials, 416, 225–229. DOI: 10.1016/j.jnucmat.2010.11.101. http://dx.doi.org/10.1016/j.jnucmat.2010.11.10110.1016/j.jnucmat.2010.11.101Search in Google Scholar

[92] Qi, C., Amphlett, J. C., & Peppley, B. A. (2007). K (Na)-promoted Ni, Al layered double hydroxide catalysts for the steam reforming of methanol. Journal of Power Sources, 171, 842–849. DOI: 10.1016/j.jpowsour.2007.06.018. http://dx.doi.org/10.1016/j.jpowsour.2007.06.01810.1016/j.jpowsour.2007.06.018Search in Google Scholar

[93] Ram Reddy, M. K., Xu, Z. P., Lu, G. Q., & Diniz da Costa, J. C. (2006). Layered double hydroxides for CO2 capture: Structure evolution and regeneration. Industrial & Engineering Chemistry Research, 45, 7504–7508. DOI: 10.1021/ie060757k. http://dx.doi.org/10.1021/ie060757k10.1021/ie060757kSearch in Google Scholar

[94] Reinholdt, M. X., & Kirkpatrick, R. J. (2006). Experimental investigations of amino acid-layered double hydroxide complexes: Glutamate-hydrotalcite. Chemistry of Materials, 18, 2567–2576. DOI: 10.1021/cm052107x. http://dx.doi.org/10.1021/cm052107x10.1021/cm052107xSearch in Google Scholar

[95] Ren, Z. F., He, J., Zhang, C. Q., & Duan, X. (2002). Removal of chloride anion by calcined layered double hydroxides. Fine Chemicals, 19, 339–342. Search in Google Scholar

[96] Rives, V. (2001). Layered double hydroxides: Present and future. New York, NY, USA: Nova Science Publishers. Search in Google Scholar

[97] Rives, V., & Ulibarri, M. A. (1999). Layered double hydroxides (LDH) intercalated with metal coordination compounds and oxometalates. Coordination Chemistry Reviews, 181, 61–120. DOI: 10.1016/S0010-8545(98)00216-1. http://dx.doi.org/10.1016/S0010-8545(98)00216-110.1016/S0010-8545(98)00216-1Search in Google Scholar

[98] Ryu, S. J., Jung, H., Oh, J. M., Lee, J. K., & Choy, J. H. (2010). Layered double hydroxide as novel antibacterial drug delivery system. Journal of Physics and Chemistry of Solids, 71, 685–688. DOI: 10.1016/j.jpcs.2009.12.066. http://dx.doi.org/10.1016/j.jpcs.2009.12.06610.1016/j.jpcs.2009.12.066Search in Google Scholar

[99] Sarakha, L., Forano, C., & Boutinaud, P. (2009). Intercalation of luminescent Europium(III) complexes in layered double hydroxides. Optical Materials, 31, 562–566. DOI: 10.1016/j.optmat.2007.10.018. http://dx.doi.org/10.1016/j.optmat.2007.10.01810.1016/j.optmat.2007.10.018Search in Google Scholar

[100] Shan, D., Cosnier, S., & Mousty, C. (2003). Layered double hydroxides: An attractive material for electrochemical biosensor design. Analytical Chemistry, 75, 3872–3879. DOI: 10.1021/ac030030v. http://dx.doi.org/10.1021/ac030030v10.1021/ac030030vSearch in Google Scholar PubMed

[101] Shi, H., & He, J. (2011). Orientated intercalation of tartrate as chiral ligand to impact asymmetric catalysis. Journal of Catalysis, 279, 155–162. DOI: 10.1016/j.jcat.2011.01.012. http://dx.doi.org/10.1016/j.jcat.2011.01.01210.1016/j.jcat.2011.01.012Search in Google Scholar

[102] Singh, R., Ram Reddy, M. K., Wilson, S., Joshi, K., Diniz da Costa, J. C., & Webley, P. (2009). High temperature materials for CO2 capture. Energy Procedia, 1(1), 623–630. DOI: 10.1016/j.egypro.2009.01.082. http://dx.doi.org/10.1016/j.egypro.2009.01.08210.1016/j.egypro.2009.01.082Search in Google Scholar

[103] Tammaro, L., Costantino, U., Bolognese, A., Sammartino, G., Marenzi, G., Calignano, A., Tetè, S., Mastrangelo, F., Califano, L., & Vittoria, V. (2007). Nanohybrids for controlled antibiotic release in topical applications. International Journal of Antimicrobial Agents, 29, 417–423. DOI: 10.1016/j.ijantimicag.2006.11.019. http://dx.doi.org/10.1016/j.ijantimicag.2006.11.01910.1016/j.ijantimicag.2006.11.019Search in Google Scholar PubMed

[104] Tammaro, L., Costantino, U., Nochetti, M., & Vittoria, V. (2009). Incorporation of active nano-hybrids into poly(ɛ-caprolactone) for local controlled release: Antifibrinolytic drug. Applied Clay Science, 43, 350–356. DOI: 10.1016/j.clay.2008.10.005. http://dx.doi.org/10.1016/j.clay.2008.10.00510.1016/j.clay.2008.10.005Search in Google Scholar

[105] Thomas, N., & Rajamathi, M. (2009). Intracrystalline oxidation of thiosulfate-intercalated layered double hydroxides. Langmuir, 25, 2212–2216. DOI: 10.1021/la803402j. http://dx.doi.org/10.1021/la803402j10.1021/la803402jSearch in Google Scholar PubMed

[106] Tong, D. S., Zhou, C. H., Li, M. Y., Yu, W. H., Beltramini, J., Lin, C. X., & Xu, Z. P. (2010). Structure and catalytic properties of Sn-containing layered double hydroxides synthesized in the presence of dodecylsulfate and dodecylamine. Applied Clay Science, 48, 569–574. DOI: 10.1016/j.clay.2010.03.005. http://dx.doi.org/10.1016/j.clay.2010.03.00510.1016/j.clay.2010.03.005Search in Google Scholar

[107] Trikeriotis, M., & Ghanotakis, D. F. (2007). Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. International Journal of Pharmaceutics, 332, 176–184. DOI: 10.1016/j.ijpharm.2006.09.031. http://dx.doi.org/10.1016/j.ijpharm.2006.09.03110.1016/j.ijpharm.2006.09.031Search in Google Scholar PubMed

[108] Tyner, K. M., Schiffman, S. R., & Giannelis, E. P. (2004). Nanobiohybrids as delivery vehicles for camptothecin. Journal of Controlled Release, 95, 501–514. DOI: 10.1016/j.jconrel.2003.12.027. http://dx.doi.org/10.1016/j.jconrel.2003.12.02710.1016/j.jconrel.2003.12.027Search in Google Scholar

[109] Ulibarri, M. A., & Hermosín, M. C. (2001). Layered double hydroxides in water decontamination. In V. Rives (Ed.), Layered double hydroxides: Present and future. New York, NY, USA: Nova Science Publishers. Search in Google Scholar

[110] Utracki, L. A., Sepehr, M., & Boccaleri, E. (2007). Synthetic layered nanoparticles for polymeric nanocomposites (PNCs). Polymers for Advanced Technologies, 18, 1–37. DOI: 10.1002/pat.852. http://dx.doi.org/10.1002/pat.85210.1002/pat.852Search in Google Scholar

[111] Vaccari, A., Basile, F., & Fornasari, G. (2007). Catalytic activity of layered double hydroxides or hydrotalcite-type anionic clays. In P. Somasundaran, & A. Hubbard (Eds.), Encyclopedia of surface and colloid science (2nd ed.). New York, NY, USA: Taylor & Francis. DOI: 10.1081/E-ESCS-120000046. Search in Google Scholar

[112] Walspurger, S., Cobden, P. D., Safonova, O. V., Wu, Y., & Anthony, E. J. (2010). High CO2 storage capacity in alkali-promoted hydrotalcite-based material: In situ detection of reversible formation of magnesium carbonate. Chemistry — A European Journal, 16, 12694–12700. DOI: 10.1002/chem.201000687. http://dx.doi.org/10.1002/chem.20100068710.1002/chem.201000687Search in Google Scholar

[113] Wang, L., Meng, X., & Xiao, F. (2010). Au nanoparticles supported on a layered double hydroxide with excellent catalytic properties for the aerobic oxidation of alcohols. Chinese Journal of Catalysis, 31, 943–947. DOI: 10.1016/S1872-2067(09)60091-7. http://dx.doi.org/10.1016/S1872-2067(09)60091-710.1016/S1872-2067(09)60091-7Search in Google Scholar

[114] Wang, L., Wang, D., Dong, X. Y., Zhang, Z. J., Pei, X. F., Chen, X. J., Chen, B., & Jin, J. (2011a). Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors. Chemical Communications, 47, 3556–3558. DOI: 10.1039/C0CC05420H. http://dx.doi.org/10.1039/c0cc05420h10.1039/c0cc05420hSearch in Google Scholar PubMed

[115] Wang, S., Yan, S., Ma, X., & Gong, J. (2011b). Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy & Environmental Science, 4, 3805–3819. DOI: 10.1039/C1EE01116B. http://dx.doi.org/10.1039/c1ee01116b10.1039/c1ee01116bSearch in Google Scholar

[116] Wang, Y., Bryan, C., Gao, H., Phol, P. I., Brinker, C. J., Yu, K., Xu, H., Yang, Y., Braterman, P. S., & Xu, Z. (2003). Potential applications of nanostructured materials in nuclear waste management. Albuquerque, NM, USA: Sandia National Laboratories. (Sandia National Laboratories report: SAND2003-3313). Retrieved August, 2011, from http://www.sandia.gov Search in Google Scholar

[117] Wang, Y., & Gao, H. (2006). Compositional and structural control on anion sorption capability of layered double hydroxides (LDHs). Journal of Colloid and Interface Science, 301, 19–26. DOI: 10.1016/j.jcis.2006.04.061. http://dx.doi.org/10.1016/j.jcis.2006.04.06110.1016/j.jcis.2006.04.061Search in Google Scholar PubMed

[118] Wang, Z., Liu, F., & Chao, L. (2011c). Mg-Al-carbonate layered double hydroxides as a novel catalyst of luminol chemiluminescence. Chemical Communications, 47, 5479–5481. DOI: 10.1039/C1CC10520E. http://dx.doi.org/10.1039/c1cc10520e10.1039/C1CC10520ESearch in Google Scholar

[119] Wang, Z., Wang, E., Gao, L., & Xu, L. (2005). Synthesis and properties of Mg2Al layered double hydroxides containing 5-fluorouracil. Journal of Solid State Chemistry, 178, 736–741. DOI: 10.1016/j.jssc.2004.11.005. http://dx.doi.org/10.1016/j.jssc.2004.11.00510.1016/j.jssc.2004.11.005Search in Google Scholar

[120] Wei, M., Guo, J., Shi, Z., Yuan, Q., Pu, M., Rao, G., & Duan, X. (2007). Preparation and characterization of l-cystine and l-cysteine intercalated layered double hydroxides. Journal of Materials Science, 42, 2684–2689. DOI: 10.1007/s10853-006- 1368-x. http://dx.doi.org/10.1007/s10853-006-1368-x10.1007/s10853-006-1368-xSearch in Google Scholar

[121] Wypych, F., Bubniak, G. A., Hamla, M., & Nakagaki, S. (2003). Exfoliation and immobilization of anionic porphyrin in layered double hydroxides. Journal of Colloid and Interface Science, 264, 203–207. DOI: 10.1016/S0021-9797(03)00374-6. http://dx.doi.org/10.1016/S0021-9797(03)00374-610.1016/S0021-9797(03)00374-6Search in Google Scholar

[122] Xia, S. J., Ni, Z. M., Xu, Q., Hu, B. X., & Hu, J. (2008). Layered double hydroxides as supports for intercalation and sustained release of antihypertensive drugs. Journal of Solid State Chemistry, 181, 2610–2619. DOI: 10.1016/j.jssc.2008.06.009. http://dx.doi.org/10.1016/j.jssc.2008.06.00910.1016/j.jssc.2008.06.009Search in Google Scholar

[123] Xu, Z. P., & Lu, G. Q. (2006). Layered double hydroxide nanomaterials as potential cellular drug delivery agents. Pure and Appied Chemistry, 78, 1771–1779. DOI: 10.1351/pac200678091771. http://dx.doi.org/10.1351/pac20067809177110.1351/pac200678091771Search in Google Scholar

[124] Xu, Z. P., Walker, T. L., Liu, K. L., Cooper, H. M., Max Lu, G. Q., & Bartlett, P. F. (2007). Layered double hydroxide nanoparticles as cellular delivery vectors of supercoiled plasmid DNA. International Journal of Nanomedicine, 2, 163–174. DOI: 10.2147/IJN.S. Search in Google Scholar

[125] Xu, Z. P., Zhang, J., Adebajo, M. O., Zhang, H., & Zhou, C. (2011). Catalytic applications of layered double hydroxides and derivatives. Applied Clay Science, 53, 139–150. DOI: 10.1016/j.clay.2011.02.007. http://dx.doi.org/10.1016/j.clay.2011.02.00710.1016/j.clay.2011.02.007Search in Google Scholar

[126] You, Y., Vance, G. F., & Zhao, H. (2001). Selenium adsorption on Mg-Al and Zn-Al layered double hydroxides. Applied Clay Science, 20, 13–25. DOI: 10.1016/S0169-1317(00)00043-0. http://dx.doi.org/10.1016/S0169-1317(00)00043-010.1016/S0169-1317(00)00043-0Search in Google Scholar

[127] Yu, J. J., Wang, X. P., Tao, Y. X., Hao, Z. P., & Xu, Z. P. (2007). Effective NOx decomposition and storage/reduction over mixed oxides derived from layered double hydroxides. Industrial & Engineering Chemistry Research, 46, 5794–5797. DOI: 10.1021/ie0705958. http://dx.doi.org/10.1021/ie070595810.1021/ie0705958Search in Google Scholar

[128] Yucca Mountain (2011). Yucca Mountain nuclear repository project. Retrieved August, 2011, http://www.yuccamountain.org Search in Google Scholar

[129] Zhang, F., Xiang, X., Li, F., & Duan, X. (2008). Layered double hydroxides as catalytic materials: Recent developments. Catalysis Surveys from Asia, 12, 253–265. DOI 10.1007/s10563-008-9061-5. http://dx.doi.org/10.1007/s10563-008-9061-510.1007/s10563-008-9061-5Search in Google Scholar

[130] Zhang, H., Pan, D., & Duan, X. (2009a). Synthesis, characterization, and magnetically controlled release behavior of novel core-shell structural magnetic ibuprofen-intercalated LDH nanohybrids. The Journal of Physical Chemistry C, 113, 12140–12148. DOI: 10.1021/jp901060v. http://dx.doi.org/10.1021/jp901060v10.1021/jp901060vSearch in Google Scholar

[131] Zhang, H., Pan, D., Zou, K., He, J., & Duan, X. (2009b). A novel core-shell structured magnetic organic-inorganic nanohybrid involving drug-intercalated layered double hydroxides coated on a magnesium ferrite core for magnetically controlled drug release. Materials Chemistry, 19, 3069–3077. DOI: 10.1039/B820176E. http://dx.doi.org/10.1039/b820176e10.1039/b820176eSearch in Google Scholar

[132] Zhang, H., Qi, R., Evans, D. G., & Duan, X. (2004). Synthesis and characterization of a novel nano-scale magnetic solid base catalyst involving a layered double hydroxide supported on a ferrite core. Journal of Solid State Chemistry, 177, 772–780. DOI: 10.1016/j.jssc.2003.09.009. http://dx.doi.org/10.1016/j.jssc.2003.09.00910.1016/j.jssc.2003.09.009Search in Google Scholar

[133] Zhang, H., Zou, K., Sun, H., & Duan, X. (2005). A magnetic organic-inorganic composite: Synthesis and characterization of magnetic 5-aminosalicylic acid intercalated layered double hydroxides. Journal of Solid State Chemistry, 178, 3485–3493. DOI: 10.1016/j.jssc.2005.09.008. http://dx.doi.org/10.1016/j.jssc.2005.09.00810.1016/j.jssc.2005.09.008Search in Google Scholar

[134] Zhao, S., Xu, J., Wie, M., & Song, Y. F. (2011). Synergistic catalysis by polyoxometalate-intercalated layered double hydroxides: oximation of aromatic aldehydes with large enhancement of selectivity. Green Chemistry, 13, 384–389. DOI: 10.1039/C0GC00664E. http://dx.doi.org/10.1039/c0gc00664e10.1039/c0gc00664eSearch in Google Scholar

Published Online: 2011-11-16
Published in Print: 2012-1-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-011-0100-8/html
Scroll to top button