Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 8, 2012

Doping level of Mn in high temperature grown Zn1−x MnxO studied through electronic charge distribution, magnetization, and local structure

  • Ramachandran Saravanan EMAIL logo , Santhanam Francis and John Berchmans
From the journal Chemical Papers

Abstract

Mn inclusion in the oxide based diluted magnetic semiconductor Zn1−x MnxO (x = 0.04, 0.06, 0.08, and 0.10) grown by standard high temperature solid state reaction technique has been studied. The local and average structure of Zn1−x MnxO was characterized by the super resolution technique maximum entropy method and pair distribution function analysis using the X-ray powder data. Magnetic studies on this material using a Vibrating Sample Magnetometer were also carried out to ascertain the doping level in Zn1−x MnxO.

[1] Akyuz, I., Kose, S., Atay, F., & Bilgin, V. (2006). The optical, structural and morphological properties of ultrasonically sprayed ZnO:Mn films. Semiconductor Science and Technology, 21, 1620–1626. DOI: 10.1088/0268-1242/21/12/020. http://dx.doi.org/10.1088/0268-1242/21/12/02010.1088/0268-1242/21/12/020Search in Google Scholar

[2] Chen, W., Zhao, L. F., Wang, Y. Q., Miao, J. H., Liu, S., Xia, Z. C., & Yuan, S. L. (2005). Effects of temperature and atmosphere on the magnetism properties of Mn-doped ZnO. Applied Physics Letters, 87, 42507. DOI: 10.1063/1.1952570. http://dx.doi.org/10.1063/1.195257010.1063/1.1952570Search in Google Scholar

[3] Egami, T. (1990). Atomic correlations in non-periodic matter. Materials Transactions, JIM, 31, 163–176. 10.2320/matertrans1989.31.163Search in Google Scholar

[4] Egami, T. (1998). PDF analysis applied to crystalline materials. In S. J. L. Billinge, & M. F. Thorpe (Eds.), Local structure from diffraction. New York, NY, USA: Plenum Press. DOI: 10.1007/0-306-47077-2 1. Search in Google Scholar

[5] Farrow, C. L., Juhas, P., Liu, J. W., Bryndin, D., Božin, E. S., Bloch, J., Proffen, Th., & Billinge, S. J. L. (2007). PDF-fit2 and PDFgui: computer programs for studying nanostructure in crystals. Journal of Physics: Condensed Matter, 19, 335219. DOI: 10.1088/0953-8984/19/33/335219. http://dx.doi.org/10.1088/0953-8984/19/33/33521910.1088/0953-8984/19/33/335219Search in Google Scholar PubMed

[6] Iusan, D., Sanyal, B., & Eriksson, O. (2006). Theoretical study of the magnetism of Mn-doped ZnO with and without defects. Physical Review B, 74, 235208. DOI: 10.1103/Phys-RevB.74.235208. http://dx.doi.org/10.1103/PhysRevB.74.235208Search in Google Scholar

[7] Izumi, F., & Dilanian, R. A. (2002). Recent research developments in physics (Vol. 3, Part II, pp. 699–726). Trivandrum, Kerala, India: Transworld Research Network. Search in Google Scholar

[8] Jayakumar, O. D., Salunke, H. G., Kadam, R. M., Mohapatra, M., Yaswant, G., & Kulshreshtha, S. K. (2006). Magnetism in Mn-doped ZnO nanoparticles prepared by a co-precipitation method. Nanotechnology, 17, 1278–1285. DOI: 10.1088/0957-4484/17/5/020. http://dx.doi.org/10.1088/0957-4484/17/5/02010.1088/0957-4484/17/5/020Search in Google Scholar

[9] Jeong, I. K., Thompson, J., Proffen, Th., Turner, A. M. P., & Billinge, S. J. L. (2001). PDFgetX: a program for obtaining the atomic pair distribution function from X-ray powder diffraction data. Journal of Applied Crystallography, 34, 536. DOI: 10.1107/s0021889801011487. http://dx.doi.org/10.1107/S002188980100920710.1107/S0021889801011487Search in Google Scholar

[10] Karamat, S., Mahmood, S., Lin, J. J., Pan, Z. Y., Lee, P., Tan, T. L., Springham, S. V., Ramanujan, R. V., & Rawat, R. S. (2008). Structural, optical and magnetic properties of (ZnO)1−x (MnO2)x thin films deposited at room temperatur. Applied Surface Science, 254, 7285–7289. DOI: 10.1016/j.apsusc.2008.05.318. http://dx.doi.org/10.1016/j.apsusc.2008.05.31810.1016/j.apsusc.2008.05.318Search in Google Scholar

[11] Momma, K., & Izumi, F. J. (2008). VESTA: a three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653–658. DOI: 10.1107/s0021889808012016. http://dx.doi.org/10.1107/S002188980801201610.1107/S0021889808012016Search in Google Scholar

[12] Norton, D. P., Pearton, S. J., Hebard, A. F., Theodoropoulou, N., Boatner, L. A., & Wilson, R. G. (2003). Ferromagnetism in Mn-implanted ZnO:Sn single crystals. Applied Physics Letters, 82, 239–241. DOI: 10.1063/1.1537457. http://dx.doi.org/10.1063/1.153745710.1063/1.1537457Search in Google Scholar

[13] Pancove, J. (1979). Optical processes in semiconductors. Englewood Cliffs, NJ, USA: Prentice-Hall. Search in Google Scholar

[14] Pearton, S. J., Abernathy, C. R., Overberg, M. E., Thaler, G. T., Norton, D. P., Theodoropoulou, N., Hebard, A. F., Park, Y. D., Ren, F., Kim, J., & Boatner, L. A. (2003a). Wide band gap ferromagnetic semiconductors and oxides. Journal of Applied Physics, 93, 1–13. DOI: 10.1063/1.1517164. http://dx.doi.org/10.1063/1.151716410.1063/1.1517164Search in Google Scholar

[15] Pearton, S. J., Abernathy, C. R., Thaler, G. T., Frazier, R., Ren, F., Hebard, A. F., Park, Y. D., Norton, D. P., Tang, W., Stavola, M., Zavada, J. M., & Wilson, R. G. (2003b). Effects of defects and doping on wide band gap ferromagnetic semiconductors. Physica B: Condensed Matter, 340–342, 39–47. DOI: 10.1016/j.physb.2003.09.003. http://dx.doi.org/10.1016/j.physb.2003.09.00310.1016/j.physb.2003.09.003Search in Google Scholar

[16] Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W., & Steiner, T. (2004). Recent advances in processing of ZnO. Journal of Vacuum Science and Technology B, 22, 932–948. DOI: 10.1116/1.1714985. http://dx.doi.org/10.1116/1.171498510.1116/1.1714985Search in Google Scholar

[17] Petříček, V., Dušek, M., & Palatinus, L. (2006). JANA 2006. The crystallographic computing system [computer software]. Prague, Czech Republic: Academy of Sciences of the Czech Republic. Search in Google Scholar

[18] Priour, D. J., Hwang, E. H., & Das Sarma, S. (2004). Disordered RKKY lattice mean field theory for ferromagnetism in diluted magnetic semiconductors. Physics Review Letters, 92, 117201. DOI: 10.1103/PhysRevLett.92.117201. http://dx.doi.org/10.1103/PhysRevLett.92.11720110.1103/PhysRevLett.92.117201Search in Google Scholar PubMed

[19] Rietveld, H. M., (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65–71. DOI: 10.1107/s0021889869006558. http://dx.doi.org/10.1107/S002188986900655810.1107/S0021889869006558Search in Google Scholar

[20] Rubi, D., Fontcuberta, J., Calleja, A., Aragonès, Ll., Capdevila, X. G., & Segarra, M. (2007). Reversible ferromagnetic switching in ZnO:(Co, Mn) powders. Physical Review B, 75, 155322. DOI: 10.1103/physRevB.75.155322. http://dx.doi.org/10.1103/PhysRevB.75.15532210.1103/PhysRevB.75.155322Search in Google Scholar

[21] Saravanan, R., Majella Mary Ann, A., & Jainulabdeen, S. (2007). Non-nuclear maxima (NNM), symmetric and asymmetric charge distribution in solar grade Si and n-GaAs, using X-ray powder data. Physica B: Condensed Matter, 400, 16–21. DOI: 10.1016/j.physb.2007.06.010. http://dx.doi.org/10.1016/j.physb.2007.06.01010.1016/j.physb.2007.06.010Search in Google Scholar

[22] Saravanan, R., & Prema Rani, M. (2007). Maximum entropy method and multipole analysis of the bonding in sodium and vanadium metals. Journal of Physics: Condensed Matter, 19, 266221. DOI: 10.1088/0953-8984/19/26/266221. http://dx.doi.org/10.1088/0953-8984/19/26/26622110.1088/0953-8984/19/26/266221Search in Google Scholar PubMed

[23] Saravanan, R., Syed Ali, K. S., & Israel, S. (2008). Electron density distribution in Si and Ge using multipole, maximum entropy method and pair distribution function analysis. Pramana-Journal of Physics, 70, 679–696. DOI: 10.1007/s12043-008-0029-9. http://dx.doi.org/10.1007/s12043-008-0029-910.1007/s12043-008-0029-9Search in Google Scholar

[24] Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystollographica Section A, 32, 751–767. DOI: 10.1107/s0567739476001551. http://dx.doi.org/10.1107/S056773947600155110.1107/S0567739476001551Search in Google Scholar

[25] Sharma, P., Gupta, A., Rao, K. V., Owens, F. J., Sharma, R., Ahuja, R., Osorio Guillen, J. M., Johansson, B., & Gehring, G. A. (2003). Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO. Nature Materials, 2, 673–677. DOI: 10.1038/nmat984. http://dx.doi.org/10.1038/nmat98410.1038/nmat984Search in Google Scholar PubMed

[26] Sharma, V. K., Xalxo, R., & Varma, G. D. (2007). Structural and magnetic studies of Mn-doped ZnO. Crystal Research and Technology, 42, 34–38. DOI: 10.1002/crat.200610766. http://dx.doi.org/10.1002/crat.20061076610.1002/crat.200610766Search in Google Scholar

[27] Shinde, V. R., Gujar, T. P., Lokhande, C. D., Mane, R. S., & Han, S. H. (2006). Mn doped and undoped ZnO films: A comparative structural, optical and electrical properties study. Materials Chemistry and Physics, 96, 326–330. DOI: 10.1016/j.matchemphys.2005.07.045. http://dx.doi.org/10.1016/j.matchemphys.2005.07.04510.1016/j.matchemphys.2005.07.045Search in Google Scholar

[28] Singh, L. K., & Mohan, H. (1975). Optical semiconductor element and fabricating method. Indian Journal of Pure & Applied Physics, 13, 486–488. Search in Google Scholar

[29] Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b), 15, 627–637. DOI: 10.1002/pssb.19660150 224. http://dx.doi.org/10.1002/pssb.19660150224Search in Google Scholar

[30] Wagner, C. N. J. (1978). Direct methods for the determination of atomic-scale structure of amorphous solids (X-ray, electron, and neutron scattering). Journal of Non-Crystalline Solids, 31, 1–40. DOI: 10.1016/0022-3093(78)90097-2. http://dx.doi.org/10.1016/0022-3093(78)90097-210.1016/0022-3093(78)90097-2Search in Google Scholar

[31] Warren, B. E. (1990). X-ray diffraction. New York, NY, USA: Dover Books on Physics. Search in Google Scholar

[32] Yan, W., Sun, Z., Liu, Q., Li, Z., Pan, Z., Wang, J., Wei, S., Wang, D., Zhou, Y., & Zhang, X. (2007). Zn vacancy induced room-temperature ferromagnetism in Mn-doped ZnO. Applied Physics Letters, 91, 062113. DOI: 10.1063/1.2769391. http://dx.doi.org/10.1063/1.276939110.1063/1.2769391Search in Google Scholar

[33] Yuonesi, M., Ghazi, M. E., Izadifard, M., & Yaghobi, M. (2008). The optical and structural properties of ZnO:Mn nano films grown by sol-gel. Journal of Optoelectronics and Advanced Materials, 10, 2603–2606. Search in Google Scholar

Published Online: 2012-1-8
Published in Print: 2012-3-1

© 2011 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-011-0129-8/html
Scroll to top button