Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 22, 2012

Increase of biogas production from pretreated hay and leaves using wood-rotting fungi

  • Tomáš Mackuľak EMAIL logo , Josef Prousek , Ľubomír Švorc and Miloslav Drtil
From the journal Chemical Papers

Abstract

Wood-decaying mushrooms can be applied for the pretreatment of lignocellulosic substrates such as leaves, hay and straw. The use of wood-decaying fungus Auricularia auricula-judae for the decomposition of sweet chestnut (Castanea sativa) leaves and hay is discussed in the proposed paper. Such pretreated substrate was employed in the anaerobic processes for biogas production. Comparison of pretreated and non-pretreated substrate revealed that an increase of 15 % in the biogas production can be achieved using the pretreated substrate. Composition of organic compounds in the sludge during the anaerobic process was identified by HPLC. The obtained results show that the utilization of pretreated leaves and hay leads to a gradual increase of the concentration of formic, acetic, and volatile fatty acids as well as to the formation of some aldehydes, ketones, and alcohols.

[1] Bonugli-Santosa, R. C., Durrant, L. R., da Silva, M., & Settec, D. L. (2010). Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme and Microbial Technology, 46, 32–37. DOI: 10.1016/j.enzmictec.2009.07.014. http://dx.doi.org/10.1016/j.enzmictec.2009.07.01410.1016/j.enzmictec.2009.07.014Search in Google Scholar

[2] Dančová, L., Bodík, I., Blšťáková, A., Jakubčová, Z., & Drtil, M. (2008). Long-term operation of a domestic wastewater treatment plant with membrane filtration. Chemical Papers, 62, 451–457. DOI: 10.2478/s11696-008-0051-x. http://dx.doi.org/10.2478/s11696-008-0051-x10.2478/s11696-008-0051-xSearch in Google Scholar

[3] Gaitan, I. J., Medina, S. C., González, J. C., Rodríguez, A., Espejo, Á. J., Osma, J. F., Sarria, V., Alméciga-Díaz, C. J., & Sánchez, O. F. (2011). Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens. Bioresource Technology, 102, 3632–3635. DOI: 10.1016/j.biortech.2010.11.040. http://dx.doi.org/10.1016/j.biortech.2010.11.04010.1016/j.biortech.2010.11.040Search in Google Scholar

[4] Gómes-Toribio, V., García-Martín, A. B., Martínez, M. J., Martínez, Á. T., & Guillén, F. (2009). Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Applied and Environmental Microbiology, 75, 3944–3953. DOI: 10.1128/aem.02137-08. http://dx.doi.org/10.1128/AEM.02137-0810.1128/AEM.02137-08Search in Google Scholar

[5] Guay, D. F., Cole, B. J. W., Fort, C. R., Jr., Hausman, M. C., Genco, J. M., & Elder, T. J. (2002). Mechanisms of oxidative degradation of carbohydrates during oxygen delignification. Part III: Reaction of photochemically generated hydroxyl radicals with 1,5-anhydrocellobitol and cellulose. Journal of Pulp and Paper Science, 28, 217–221. Search in Google Scholar

[6] Hammel, K. E., & Cullen, D. (2008). Role of fungal peroxidases in biological ligninolysis. Current Opinion in Plant Biology, 11, 349–355. DOI: 10.1016/j.pbi.2008.02.003. http://dx.doi.org/10.1016/j.pbi.2008.02.00310.1016/j.pbi.2008.02.003Search in Google Scholar

[7] Jellison, J., Connoly, J., Goodell, B., Doyle, B., Illaman, B., Fekete, F., & Ostrofsky, A. (1997). The role of cations in biodegradation of wood by the brown rot fungi. International Biodeterioration and Biodegradation, 39, 165–179. DOI: 10.1016/s0964-8305(97)00018-8. http://dx.doi.org/10.1016/S0964-8305(97)00018-810.1016/S0964-8305(97)00018-8Search in Google Scholar

[8] Kacprzak, A., Krzystek, L., & Ledakowicz, S. (2010). Codigestion of agricultural and industrial wastes. Chemical Papers, 64, 127–131. DOI: 10.2478/s11696-009-0108-5. http://dx.doi.org/10.2478/s11696-009-0108-510.2478/s11696-009-0108-5Search in Google Scholar

[9] Ko, J. J., Shimizu, Y., Ikeda, K., Kim, S. K., Park, C. H., & Matsui, S. (2009). Biodegradation of high molecular weight lignin under sulfate reducing conditions: Lignin degradability and degradation by-products. Bioresource Technology, 100, 1622–1627. DOI: 10.1016/j.biortech.2008.09.029. http://dx.doi.org/10.1016/j.biortech.2008.09.02910.1016/j.biortech.2008.09.029Search in Google Scholar

[10] Lo, C. M., Zhang, Q., Callow, V. N., & Ju, K. L. (2010). Cellulase production by continuous culture of Trichoderma reesei Rut C30 using acid hydrolysate prepared to retain more oligosaccharides for induction. Bioresource Technology, 101, 717–723. DOI: 10.1016/j.biortech.2009.08.056. http://dx.doi.org/10.1016/j.biortech.2009.08.05610.1016/j.biortech.2009.08.056Search in Google Scholar

[11] Macucha, A., & Ferraz, A. (2001). Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme and Microbial Technology, 29, 386–391. DOI: 10.1016/s0141-0229(01)00417-3. http://dx.doi.org/10.1016/S0141-0229(01)00417-310.1016/S0141-0229(01)00417-3Search in Google Scholar

[12] Prousek, J. (2007). Fenton chemistry in biology and medicine. Pure and Applied Chemistry, 79, 2325–2338. DOI: 10.1351/pac200779122325. http://dx.doi.org/10.1351/pac20077912232510.1351/pac200779122325Search in Google Scholar

[13] Purnomo, A. S., Mori, T., & Kondo, R. (2010). Involvement of Fenton reaction in DDT degradation by brown-rot fungi. International Biodeterioration & Biodegradation, 64, 560–565. DOI: 10.1016/j.ibiod.2010.06.008. http://dx.doi.org/10.1016/j.ibiod.2010.06.00810.1016/j.ibiod.2010.06.008Search in Google Scholar

[14] Singh, D., Zeng, J., Laskar, D. D., Deobald, L., Hiscox, W. C., & Chen, S. (2011). Investigation of wheat straw biodegradation by Phanerochaete chrysosporium. Biomass and Bioenergy, 35, 1030–1040. DOI: 10.1016/j.biombioe.2010.11.021. http://dx.doi.org/10.1016/j.biombioe.2010.11.02110.1016/j.biombioe.2010.11.021Search in Google Scholar

[15] Takáčová, A., Mackuľak, T., Smolinská, M., Hutňan, M., & Olejníková, P. (2012). Influence of selected biowaste materials pre-treatment on their anaerobic digestion. Chemical Papers, 66, 129–137. DOI: 10.2478/s11696-011-0107-1. http://dx.doi.org/10.2478/s11696-011-0107-110.2478/s11696-011-0107-1Search in Google Scholar

[16] Yang, X., Ma, F., Yu, H., Zhang, X., & Chen, S. (2011). Effects of biopretreatment of corn stover with white-rot fungus on low-temperature pyrolysis products. Bioresource Technology, 102, 3498–3503. DOI: 10.1016/j.biortech.2010.11.021. http://dx.doi.org/10.1016/j.biortech.2010.11.02110.1016/j.biortech.2010.11.021Search in Google Scholar PubMed

Published Online: 2012-6-22
Published in Print: 2012-7-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0171-1/html
Scroll to top button