Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 30, 2012

Combustion-derived CdO nanopowder as a heterogeneous basic catalyst for efficient synthesis of sulfonamides from aromatic amines using p-toluenesulfonyl chloride

  • Belladamadu Anandakumar EMAIL logo , Muthukur Madhusudana Reddy , Kumarappa Thipperudraiah , Mohamed Pasha and Gujjarahalli Chandrappa
From the journal Chemical Papers

Abstract

A simple and rapid synthesis of CdO nanopowder via the solution combustion route employing l-(+)-tartaric acid as a fuel is reported for the first time. The catalyst was characterized by PXRD, SEM, TEM, BET surface area measurement, basic site measurement from back titration and FTIR. Combustion derived CdO nanopowder acts as a catalyst in the sulfonylation of amines with p-toluenesulfonyl chloride to obtain sulfonamides in excellent yield (85–95 %) and high purity under mild reaction conditions. CdO nanopowder has been found to be an efficient catalyst requiring a shorter reaction time (10–30 min) to obtain sulfonamide when compared with the commercial CdO powder requiring 2 h under similar conditions. The catalyst can be recovered and reused four times without any significant loss of catalytic activity. Potential role of CdO nanopowder in the synthesis of sulfonamides and its mechanism is proposed.

[1] Abd El-Salaam, K. M., & Hassan, E. A. (1982). Active surface centres in a heterogeneous CdO catalyst for ethanol decomposition. Surface Technology, 16, 121–128. DOI: 10.1016/0376-4583(82)90031-0. http://dx.doi.org/10.1016/0376-4583(82)90031-010.1016/0376-4583(82)90031-0Search in Google Scholar

[2] Alves, M. B., Medeiros, F. C. M., & Suarez, P. A. Z. (2010). Cadmium compounds as catalysts for biodiesel production. Industrial & Engineering Chemistry Research, 49, 7176–7182. DOI: 10.1021/ie100172u. http://dx.doi.org/10.1021/ie100172u10.1021/ie100172uSearch in Google Scholar

[3] Anderson, K. K. (1979). Sulphonic acids and their derivatives. In D. N. Jones (Ed.), Comprehensive organic chemistry (Vol. 3, pp. 345). Oxford, UK: Pergamon Press. Search in Google Scholar

[4] Angappan, S., Bechermans, L. J., & Augustin, C. O. (2004). Sintering behaviour of MgAl2O4-a prospective anode material. Materials Letters, 58, 2283–2289. DOI: 10.1016/j.matlet.2004.01.033. http://dx.doi.org/10.1016/j.matlet.2004.01.03310.1016/j.matlet.2004.01.033Search in Google Scholar

[5] Ashoka, S., Chithaiah, P., & Chandrappa, G. T. (2010). Studies on the synthesis of CdCO3 nanowires and porous CdO powder. Materials Letters, 64, 173–178. DOI: 10.1016/j.matlet.2009.10.036. http://dx.doi.org/10.1016/j.matlet.2009.10.03610.1016/j.matlet.2009.10.036Search in Google Scholar

[6] Askarinejad, A., & Morsali, A. (2008). Syntheses and characterization of CdCO3 and CdO nanoparticles by using sonochemical method. Materials Letters, 62, 478–482. DOI: 10.1016/j.matlet.2007.05.082. http://dx.doi.org/10.1016/j.matlet.2007.05.08210.1016/j.matlet.2007.05.082Search in Google Scholar

[7] Balandin, A. A., Ferapontov, V. A., & Tolstopyatova, A. A. (1960). The activity of cadmium oxide as catalyst for hydrogen dehydrogenation. Russian Chemical Bulletin, 9, 1630–1636. DOI: 10.1007/bf00906559. http://dx.doi.org/10.1007/BF0090655910.1007/BF00906559Search in Google Scholar

[8] Blin, J. L., Léonard, A., Yuan, Z. Y., Gigot, L., Vantomme, A., Cheetham, A. K., & Su, B. L. (2003). Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angewandte Chemie, 115, 2978–2981. DOI: 10.1002/ange.200250816. http://dx.doi.org/10.1002/ange.20025081610.1002/ange.200250816Search in Google Scholar

[9] Blomqvist, K., & Ebbe, R. (1984). Solution studies of systems with polynuclear complex formation. 5. Copper (II) and cadmium (II) d-(+)-tartrate systems. Inorganic Chemistry, 23, 3730–3734. DOI: 10.1021/ic00191a013. http://dx.doi.org/10.1021/ic00191a01310.1021/ic00191a013Search in Google Scholar

[10] Chan, Y.W., & Berthelette, C. ( 2002). A mild, efficient method for the synthesis of aromatic and aliphatic sulfonamides. Tetrahedron Letters, 43, 4537–4540. DOI: 10.1016/s0040-4039(02)00848-1. http://dx.doi.org/10.1016/S0040-4039(02)00848-110.1016/S0040-4039(02)00848-1Search in Google Scholar

[11] Chandrasekhar, S., & Mahapatra, S. (1998). Neighbouring group assisted sulfonamide cleavage of Sharpless aminols under acetonation conditions. Tetrahedron Letters, 39, 695–698. DOI: 10.1016/s0040-4039(97)10638-4. http://dx.doi.org/10.1016/S0040-4039(97)10638-410.1016/S0040-4039(97)10638-4Search in Google Scholar

[12] Chintareddy, V. R., & Kantam, M. L. (2011). Recent developments on catalytic applications of nano-crystalline magnesium oxide. Catalysis Surveys from Asia, 15, 89–110. DOI: 10.1007/s10563-011-9113-0. http://dx.doi.org/10.1007/s10563-011-9113-010.1007/s10563-011-9113-0Search in Google Scholar

[13] Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417, 813–821. DOI: 10.1038/nature00785. http://dx.doi.org/10.1038/nature0078510.1038/nature00785Search in Google Scholar

[14] Fahim, R. B., & Abd El-Salaam, K. M. (1967). Surface properties and hydration of cadmium oxide. Journal of Catalysis, 9, 63–69. DOI: 10.1016/0021-9517(67)90181-9. http://dx.doi.org/10.1016/0021-9517(67)90181-910.1016/0021-9517(67)90181-9Search in Google Scholar

[15] Gliński, M., Kijeński, J., & Jakubowski, A. (1995). Ketones from monocarboxylic acids: Catalytic ketonization over oxide systems. Applied Catalysis A: General, 128, 209–217. DOI: 10.1016/0926-860x(95)00082-8. http://dx.doi.org/10.1016/0926-860X(95)00082-810.1016/0926-860X(95)00082-8Search in Google Scholar

[16] Harter, W. G., Albrect, H., Brady, K., Caprathe, B., Dunbar, J., Gilmore, J., Hays, S., Kostlan, C. R., Lunney, B., & Walker, N. (2004). The design and synthesis of sulfonamides as caspase-1 inhibitors. Bioorganic & Medicinal Chemistry Letters, 14, 809–812. DOI: 10.1016/j.bmcl.2003.10.065. http://dx.doi.org/10.1016/j.bmcl.2003.10.06510.1016/j.bmcl.2003.10.065Search in Google Scholar PubMed

[17] Johnston, L. L., Nettleman, J. H., Braverman, M. A., Sposato, L. K., Supkowski, R. M., & LaDuca, R. L. (2010). Copper benzenedicarboxylate coordination polymers incorporating a long-spanning neutral co-ligand: Effect of anion inclusion and carboxylate pendant-arm length on topology and magnetism. Polyhedron, 29, 303–311. DOI: 10.1016/j.poly.2009.05.022. http://dx.doi.org/10.1016/j.poly.2009.05.02210.1016/j.poly.2009.05.022Search in Google Scholar

[18] Khaleel, A., & Al-Mansouri, S. (2010). Meso-macroporous γ-alumina by template-free sol-gel synthesis: The effect of the solvent and acid catalyst on the microstructure and textural properties. Colloid Surface A: Physicochemical and Engineering Aspects, 369, 272–280. DOI: 10.1016/j.colsurfa.2010.08.040. http://dx.doi.org/10.1016/j.colsurfa.2010.08.04010.1016/j.colsurfa.2010.08.040Search in Google Scholar

[19] Madhusudana Reddy, M. B., Ashoka, S., Chandrappa, G. T., & Pasha, M. A. (2010). Nano-MgO: An efficient catalyst for the synthesis of formamides from amines and formic acid under MWI. Catalysis Letters, 138, 82–87. DOI: 10.1007/s10562-010-0372-6. http://dx.doi.org/10.1007/s10562-010-0372-610.1007/s10562-010-0372-6Search in Google Scholar

[20] Madhusudana Reddy, M. B., Ashoka, S., Anandakumar, B. S., Chandrappa, G. T., & Pasha, M. A. (2011). Combustion derived nanocrystalline-ZrO2 and its catalytic activity for Biginelli condensation under microwave irradiation. Chinese Journal of Chemistry, 29, 1863–1868. DOI: 10.1002/cjoc.201180325. http://dx.doi.org/10.1002/cjoc.20118032510.1002/cjoc.201180325Search in Google Scholar

[21] Masoumeh, T., Alefeh G., Elaheh, K., & Masood, P. (2011). Two tartrate-pillared coordination polymers: Hydrothermal preparation, crystal structures, spectroscopic and thermal analyses of [M2(μ-C4H4O6)2(H2O)] · 3H2O∞ (M = Mn, Cd). Journal of Inorganic and Organometalic Polymers and Materials, 2121, 627–633 DOI: 10.1007/s10904-011-9495-5. http://dx.doi.org/10.1007/s10904-011-9495-510.1007/s10904-011-9495-5Search in Google Scholar

[22] Mazaheritehrani, M., Asghari, J., Lotfi Orimi, R., & Pahlavan, S. (2010). Microwave-assisted synthesis of nano-sized cadmium oxide as a new and highly efficient catalyst for solvent free acylation of amines and alcohols. Asian Journal of Chemistry, 22, 2554–2564. Search in Google Scholar

[23] Nagappa, B., & Chandrappa, G. T. (2007). Mesoporous nanocrystalline magnesium oxide for environmental remediation. Micropores and Mesopores Materials, 106, 212–218. DOI: 10.1016/j.micromeso.2007.02.052. http://dx.doi.org/10.1016/j.micromeso.2007.02.05210.1016/j.micromeso.2007.02.052Search in Google Scholar

[24] Nishida, H., Hamada, T., & Yonemitsu, O. (1988). Hydrolysis of tosyl esters initiated by an electron transfer from photoexcited electron-rich aromatic compounds. Journal of Organic Chemistry, 53, 3386–3387. DOI: 10.1021/jo00249a058. http://dx.doi.org/10.1021/jo00249a05810.1021/jo00249a058Search in Google Scholar

[25] Nondek, L., Vít, Z., & Málek, J. (1979). Determination of basic sites on the surface of metal oxide catalysts by desorption of benzoic acid. Reaction Kinetics and Catalysis Letters, 10, 7–11. DOI: 10.1007/bf02067504. http://dx.doi.org/10.1007/BF0206750410.1007/BF02067504Search in Google Scholar

[26] O’Connell, J. F., & Rapoport, H. (1992). 1-Benzenesulfonyland 1-p-toluenesulfonyl-3-methylimidazolium triflates: efficient reagents for the preparation of arylsulfonamides and arylsulfonates. The Journal of Organic Chemistry, 57, 4775–4777. DOI: 10.1021/jo00043a046. http://dx.doi.org/10.1021/jo00043a04610.1021/jo00043a046Search in Google Scholar

[27] Okuhara, T., & Tanaka, K. I. (1980). Intermediates of hydrogenation of conjugated dienes and of the isomerization of n-butenes on CdO catalyst. Journal of Catalysis, 61, 135–139. DOI: 10.1016/0021-9517(80)90348-6. http://dx.doi.org/10.1016/0021-9517(80)90348-610.1016/0021-9517(80)90348-6Search in Google Scholar

[28] Patil, K. C., Hegde, M. S., Rattan, T., & Aruna, S. T. (2008). Chemistry of nanocrystalline oxide materials: Combustion synthesis, properties and applications. Danvers, MA, USA: World Scientific. http://dx.doi.org/10.1142/978981279315710.1142/6754Search in Google Scholar

[29] Poissonnet, G., Théret-Bettiol, M. H., & Dodd, R. H. (1996). Preparation and 1,3-dipolar cycloaddition reactions of β-carboline azomethine ylides: A direct entry into C-1-and/or C-2-functionalized indolizino[8,7-b]indole derivatives. The Journal of Organic Chemistry, 61, 2273–2282. DOI: 10.1021/jo951520t. http://dx.doi.org/10.1021/jo951520t10.1021/jo951520tSearch in Google Scholar

[30] Reddy, N. S., Mallireddigari, M. R., Cosenza, S., Gumireddy, K., Bell, S. C., Reddy, E. P., & Reddy, M. V. R. (2004). Synthesis of new coumarin 3-(N-aryl) sulfonamides and their anticancer activity. Bioorganic & Medicinal Chemistry Letters, 14, 4093–4097. DOI: 10.1016/j.bmcl.2004.05.016. http://dx.doi.org/10.1016/j.bmcl.2004.05.01610.1016/j.bmcl.2004.05.016Search in Google Scholar PubMed

[31] Ristić, M., Popović, S., & Musić, S. (2004). Formation and properties of Cd(OH)2 and CdO particles. Materials Letters, 58, 2494–2499. DOI: 10.1016/j.matlet.2004.03.016. http://dx.doi.org/10.1016/j.matlet.2004.03.01610.1016/j.matlet.2004.03.016Search in Google Scholar

[32] Russell, M. G. N., Baker, R. J., Barden, L., Beer, M. S., Bristow, L., Broughton, H. B., Knowles, M., McAllister, G., Patel, S., & Castro, J. L. (2001). N-Arylsulfonylindole derivatives as serotonin 5-HT6 receptor ligands. Journal of Medicinal Chemistry, 44, 3881–3895. DOI: 10.1021/jm010943m. http://dx.doi.org/10.1021/jm010943m10.1021/jm010943mSearch in Google Scholar PubMed

[33] Samadi, N. S., Amat Mustajab, M. K. A., & Yacob, A. R. (2010). Activation temperature effect on the basic strength of prepared aerogel MgO (AP-MgO). International Journal of Basic & Applied Sciences, 10(2), 118–121. Search in Google Scholar

[34] Santos-Cruz, J., Torres-Delgado, G., Castanedo-Perez, R., Zúñiga-Romero, C. I., & Zelaya-Angel, O. (2007). Optical and electrical characterization of fluorine doped cadmium oxide thin films prepared by the sol-gel method. Thin Solid Films, 515, 5381–5385. DOI: 10.1016/j.tsf.2007.01.036. http://dx.doi.org/10.1016/j.tsf.2007.01.03610.1016/j.tsf.2007.01.036Search in Google Scholar

[35] Scozzafava, A., Owa, T., Mastrolorenzo, A., & Supuran, C. T. (2003). Anticancer and antiviral sulfonamides. Current Medicinal Chemistry, 10, 925–953. DOI: 10.2174/0929867033457647. http://dx.doi.org/10.2174/092986703345764710.2174/0929867033457647Search in Google Scholar

[36] Sousa, C., Pacchioni, G., & Illas, F. (1999). Ab initio study of the optical transitions of F centers at low-coordinated sites of the MgO surface. Surface Science, 429, 217–228. DOI: 10.1016/s0039-6028(99)00380-5. http://dx.doi.org/10.1016/S0039-6028(99)00380-510.1016/S0039-6028(99)00380-5Search in Google Scholar

[37] Sterrer, M., Berger, T., Diwald, O., & Knözinger, E. (2003). Energy transfer on the MgO surface, monitored by UV-induced H2 chemisorption. Journal of the American Chemical Society, 125, 195–199. DOI: 10.1021/ja028059o. http://dx.doi.org/10.1021/ja028059o10.1021/ja028059oSearch in Google Scholar PubMed

[38] Stranix, B. R., Lavallée, J. F., Sévigny, G., Yelle, J., Perron, V., LeBerre, N., Herbart, D., & Wu, J. J. (2006). Lysine sulfonamides as novel HIV-protease inhibitors: Nɛ-Acyl aromatic α-amino acids. Bioorganic & Medicinal Chemistry Letters, 16, 3459–3462. DOI: 10.1016/j.bmcl.2006.04.011. http://dx.doi.org/10.1016/j.bmcl.2006.04.01110.1016/j.bmcl.2006.04.011Search in Google Scholar PubMed

[39] Supuran, C. T., Casini, A., & Scozzafava, A. (2003). Protease inhibitors of the sulfonamide type: Anticancer, antiinflammatory, and antiviral agents. Medical Research Reviews, 23, 535–558. DOI: 10.1002/med.10047. http://dx.doi.org/10.1002/med.1004710.1002/med.10047Search in Google Scholar PubMed

[40] Thakuria, H., Borah, B. M., & Das, G. (2007). Macroporous metal oxides as an efficient heterogeneous catalyst for various organic transformations—A comparative study. Journal Molecular Catalysis A: Chemical, 274, 1–10. DOI: 10.1016/j.molcata.2007.04.024. http://dx.doi.org/10.1016/j.molcata.2007.04.02410.1016/j.molcata.2007.04.024Search in Google Scholar

[41] Waghulade, R. B., Patil, P. P., & Pasricha, R. (2007). Synthesis and LPG sensing properties of nano-sized cadmium oxide. Talanta, 72, 594–599. DOI: 10.1016/j.talanta.2006.11.024. http://dx.doi.org/10.1016/j.talanta.2006.11.02410.1016/j.talanta.2006.11.024Search in Google Scholar PubMed

[42] Yasuhara, A., Kameda, M., & Sakamoto, T. (1999). Selective monodesulfonylation of N,N-disulfonylarylamines with tetrabutylammonium fluoride. Chemical and Pharmaceutical Bulletin, 47, 809–812. http://dx.doi.org/10.1248/cpb.47.80910.1248/cpb.47.809Search in Google Scholar

[43] Yuan, W., Fearson, K., & Gelb, M. H. (1989). Synthesis of sulfur-substituted phospholipid analogs as mechanistic probes of phospholipase A2 catalysis. The Journal of Organic Chemistry, 54, 906–910. DOI: 10.1021/jo00265a034. http://dx.doi.org/10.1021/jo00265a03410.1021/jo00265a034Search in Google Scholar

[44] Yuan, Z. Y., Ren, T. Z., Vantomme, A., & Su, B. L. (2004). Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials. Chemistry of Materials, 16, 5096–5106. DOI: 10.1021/cm0494812. http://dx.doi.org/10.1021/cm049481210.1021/cm0494812Search in Google Scholar

[45] Zhang, G., Zhao, Z., Liu, J., Xu, J., Jing, Y., Duan, A., & Jiang, G. (2009). Macroporous perovskite-type complex oxide catalysts of La1−x KxCo1−y FeyO3 for diesel soot combustion. Journal of Rare Earths, 27, 955–960. DOI: 10.1016/s1002-0721(08)60369-5. http://dx.doi.org/10.1016/S1002-0721(08)60369-510.1016/S1002-0721(08)60369-5Search in Google Scholar

[46] Zheng, Y. Q., Lin., J. L., & Kong, Z. P. (2004). Coordination polymers based on cobridging of rigid and flexible spacer ligands: Syntheses, crystal structures, and magnetic properties of [Mn(bpy)(H2O)(C4H4O4)]·0.5bpy, Mn(bpy)(C5H6O4), and Mn(bpy)(C6H8O4). Inorganic Chemistry, 43, 2590–2596. DOI: 10.1021/ic0301268. http://dx.doi.org/10.1021/ic030126810.1021/ic0301268Search in Google Scholar PubMed

[47] Zheng, Y. Q., Han, X. Y., & Zhu, H. L. (2010). Syntheses, crystal structures and properties of tetrahydrofuran-2,3,4,5-tetracarboxylato bridged copper(II) coordination polymers with alkali metals. Polyhedron, 29, 911–919. DOI: 10.1016/j.poly.2009.10.022. http://dx.doi.org/10.1016/j.poly.2009.10.02210.1016/j.poly.2009.10.022Search in Google Scholar

Published Online: 2012-11-30
Published in Print: 2013-2-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0253-0/html
Scroll to top button