Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 9, 2013

Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions

  • Katarzyna Staszak EMAIL logo , Zofia Karaś and Karolina Jaworska
From the journal Chemical Papers

Abstract

A comparison of polymeric and ceramic membranes in the ultrafiltration process was studied and presented. This study was conducted on the separation of cadmium(II) ions, with particular reference to parameters such as hydrodynamic permeability coefficient, membrane fouling, amount of surfactant in the permeate, efficiency, and effectiveness of the process. The effect of ionic (SDS) and non-ionic (Rofam 10) surfactants or their mixture was investigated. The hydrodynamic permeability coefficient of the ceramic membrane was found to be much lower in comparison to those of the polymeric ones (1.69 × 10−7 m3 h−1 m−2 Pa−1, 5.66 × 10−7 m3 h−1 m−2 Pa−1, and 9.26 × 10−7 m3 h−1 m−2 Pa−1 for ceramic, CA, and PVDF, respectively). However, filtration of the surfactants solutions did not cause permanent blocking of pores and the surface of the ceramic membrane in contrast to the polymeric ones. No significant differences in surfactants permeation through the membranes tested were observed. Concentration of the surfactant in the permeate was lower than 1 CMC for the Rofam 10 solution and exceeded the CMC by about 40 % for the SDS solution. Better separation properties of polymer membranes for the separation of cadmium(II) ions from micellar systems were identified.

[1] Barredo-Damas, S., Alcaina-Miranda, M. I., Bes-Piá, A., Iborra-Clar, M. I., Iborra-Clar, A., & Mendoza-Roca, J. A. (2010). Ceramic membrane behavior in textile wastewater ultrafiltration. Desalination, 250, 623–628. DOI: 10.1016/j.desal.2009.09.037. http://dx.doi.org/10.1016/j.desal.2009.09.03710.1016/j.desal.2009.09.037Search in Google Scholar

[2] Basile, A., & Gallucci, F. (Eds.) (2011). Membranes for membrane reactors: Preparation, optimization and selection. Chichester, UK: Wiley. http://dx.doi.org/10.1002/978047097756910.1002/9780470977569Search in Google Scholar

[3] Cañizares, P., Pérez, A., Camarillo, R., & Mazarro, R. (2008). Simultaneous recovery of cadmium and lead from aqueous effluents by a semi-continuous laboratory-scale polymer enhanced ultrafiltration process. Journal of Membrane Science, 320, 520–527. DOI: 10.1016/j.memsci.2008.04.043. http://dx.doi.org/10.1016/j.memsci.2008.04.04310.1016/j.memsci.2008.04.043Search in Google Scholar

[4] Chen, H. L., & Juang, R. S. (2008). Extraction of surfactin from fermentation broth with n-hexane in microporous PVDF hollow fibers: Significance of membrane adsorption. Journal of Membrane Science, 325, 599–604. DOI: 10.1016/j.memsci.2008.08.017. http://dx.doi.org/10.1016/j.memsci.2008.08.01710.1016/j.memsci.2008.08.017Search in Google Scholar

[5] Dunn, R. O., Jr., Scamehorn, J. F., & Christian, S. D. (1985). Use the micellar-enhanced ultrafiltration to remove dissolved organics from aqueous wastes. Separation Science and Technology, 20, 257–284. DOI: 10.1080/01496398508060679. http://dx.doi.org/10.1080/0149639850806067910.1080/01496398508060679Search in Google Scholar

[6] Eichler, W. (1989). Trucizny w naszym pożywieniu (Poisons in our food). Warszawa: Państwowy Zakład Wydawnictw Lekarskich. Search in Google Scholar

[7] Elimelech, M., Zhu, X. H., Childress, A. E., & Hong, S. K. (1997). Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. Journal of Membrane Science, 127, 101–109. DOI: 10.1016/s0376-7388(96)00351-1. http://dx.doi.org/10.1016/S0376-7388(96)00351-110.1016/S0376-7388(96)00351-1Search in Google Scholar

[8] Ennigrou, D. J., Gzara, L., Ben Romdhane, M. R., & Dhahbi, M. (2009). Cadmium removal from aqueous solutions by polyelectrolyte enhanced ultrafiltration. Desalination, 246, 363–369. DOI: 10.1016/j.desal.2008.04.053. http://dx.doi.org/10.1016/j.desal.2008.04.05310.1016/j.desal.2008.04.053Search in Google Scholar

[9] Huang, J. H., Zeng, G. M., Fang, Y. Y., Qu, Y. H., & Li, X. (2009). Removal of cadmium ions using micellarenhanced ultrafiltration with mixed anionic-nonionic surfactants. Journal of Membrane Science, 326, 303–309. DOI: 10.1016/j.memsci.2008.10.013. http://dx.doi.org/10.1016/j.memsci.2008.10.01310.1016/j.memsci.2008.10.013Search in Google Scholar

[10] Jönsson, C., & Jönsson, A. S. (1995). Influence of the membrane material on the adsorptive fouling of ultrafiltration membranes. Journal of Membrane Science, 108, 79–87. DOI: 10.1016/0376-7388(95)00144-x. http://dx.doi.org/10.1016/0376-7388(95)00144-X10.1016/0376-7388(95)00144-XSearch in Google Scholar

[11] Juang, R. S., Xu, Y. Y., & Chen, C. L. (2003). Separation and removal of metal ions from dilute solutions using micellarenhanced ultrafiltration. Journal of Membrane Science, 218, 257–267. DOI: 10.1016/s0376-7388(03)00183-2. http://dx.doi.org/10.1016/S0376-7388(03)00183-210.1016/S0376-7388(03)00183-2Search in Google Scholar

[12] Keurentjes, J. F. T., Harbrecht, J. G., Brinkman, D., Hanemaaijer, J. H., Cohen Stuart, M. A., & van’t Riet, K. (1989). Hydrophobicity measurements of microfiltration and ultrafiltration membranes. Journal of Membrane Science, 47, 333–344. DOI: 10.1016/s0376-7388(00)83084-7. http://dx.doi.org/10.1016/S0376-7388(00)83084-710.1016/S0376-7388(00)83084-7Search in Google Scholar

[13] Kurniawan, T. A., Chan, G. Y. S., Lo, W. H., & Babel, S. (2006). Physico-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83–98. DOI: 10.1016/j.cej.2006.01.015. http://dx.doi.org/10.1016/j.cej.2006.01.01510.1016/j.cej.2006.01.015Search in Google Scholar

[14] Li, X., Zeng, G. M., Huang, J.H., Zhang, C., Fang, Y.Y., Qu, Y. H., Luo, F., Lin, D., & Liu, H. L. (2009). Recovery and reuse of surfactant SDS from a MEUF retentate containing Cd2+ or Zn2+ by ultrafiltration. Journal of Membrane Science, 337, 92–97. DOI: 10.1016/j.memsci.2009.03.030. http://dx.doi.org/10.1016/j.memsci.2009.03.03010.1016/j.memsci.2009.03.030Search in Google Scholar

[15] Palencia, M., Rivas, B. L., & Pereira, E. (2009). Metal ion recovery by polymer-enhanced ultrafiltration using poly(vinyl sulfonic acid): Fouling description and membrane-metal ion interaction. Journal of Membrane Science, 345, 191–200. DOI: 10.1016/j.memsci.2009.08.044. http://dx.doi.org/10.1016/j.memsci.2009.08.04410.1016/j.memsci.2009.08.044Search in Google Scholar

[16] Park, H. S., & Choi, H. C. (2011). As(III) removal by hybrid reactive membrane process combined with ozonation. Water Research, 45, 1933–1940. DOI: 10.1016/j.watres.2010.12.024. http://dx.doi.org/10.1016/j.watres.2010.12.02410.1016/j.watres.2010.12.024Search in Google Scholar

[17] Rivas, B. L., Aguirre, M. C., & Pereira, E. (2007). Cationic water-soluble polymers with the ability to remove arsenate through an ultrafiltration technique. Journal of Applied Polymer Science, 106, 89–94. DOI: 10.1002/app.26499. http://dx.doi.org/10.1002/app.2649910.1002/app.26499Search in Google Scholar

[18] Romano Espinosa, D. C., Moura Bernardes, A., & Soares Tenório, J. A. (2004). An overview on the current processes for recycling of batteries. Journal of Power Sources, 135, 311–319. DOI: 10.1016/j.jpowsour.2004.03.083. http://dx.doi.org/10.1016/j.jpowsour.2004.03.08310.1016/j.jpowsour.2004.03.083Search in Google Scholar

[19] Sadegh Safarzadeh, M., Bafghi, M. S., Moradkhani, D., & Ojaghi Ilkhchi, M. (2007). A review on hydrometallurgical extraction and recovery of cadmium from various resources. Minerals Engineering, 20, 211–220. DOI: 10.1016/j.mineng.2006.07.001. http://dx.doi.org/10.1016/j.mineng.2006.07.00110.1016/j.mineng.2006.07.001Search in Google Scholar

[20] Scamehorn, J. F., Ellington, R. T., Christian, S. D., Penney, B. W., Dunn, R. O., & Bhat, S. N. (1986). Removal of multivalent metal cations from water using micellar-enhanced ultrafiltration. AIChE Symposium Series, 82(250), 48–58. Search in Google Scholar

[21] Seymour, W. B. (1940). The preparation of cellophane membranes of graded permeability. The Journal of Biological Chemistry, 134, 701–707. 10.1016/S0021-9258(18)73231-6Search in Google Scholar

[22] Staszak, K., Wieszczycka, K., & Burmistrzak, P. (2011). Removal of cadmium(II) ions from chloride solutions by Cyanex 301 and Cyanex 302. Separation Science and Technology, 46, 1495–1502. DOI: 10.1080/01496395.2011.563258. http://dx.doi.org/10.1080/01496395.2011.56325810.1080/01496395.2011.563258Search in Google Scholar

[23] Staszak, K., Konopczyńska, B., & Prochaska, K. (2012). Micellar enhanced ultrafiltration as a method of removal of chromium(III) ions from aqueous solutions. Separation Science and Technology, 47, 802–810. DOI: 10.1080/01496395.2011.644613. http://dx.doi.org/10.1080/01496395.2011.64461310.1080/01496395.2011.644613Search in Google Scholar

[24] Tounissou, P., Hebrant, M., & Tondre, C. (1996). On the behavior of micellar solutions in tangential ultrafiltration using mineral membranes. Journal of Colloid and Interface Science, 183, 491–497. DOI: 10.1006/jcis.1996.0572. http://dx.doi.org/10.1006/jcis.1996.057210.1006/jcis.1996.0572Search in Google Scholar PubMed

[25] Yenphan, P., Chanachai, A., & Jiraratananon, R. (2010). Experimental study on micellar-enhanced ultrafiltration (MEUF) of aqueous solution and wastewater containing lead ion with mixed surfactants. Desalination, 253, 30–37. DOI: 10.1016/j.desal.2009.11.040. http://dx.doi.org/10.1016/j.desal.2009.11.04010.1016/j.desal.2009.11.040Search in Google Scholar

Published Online: 2013-1-9
Published in Print: 2013-4-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 20.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-012-0280-x/html
Scroll to top button