Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 9, 2013

Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers

  • Mohammad Peydayesh EMAIL logo , Gholam Esfandyari , Toraj Mohammadi and Eskandar Alamdari
From the journal Chemical Papers

Abstract

An experimental study on the removal of Cd2+ and Zn2+ through a supported liquid membrane using a mixture of mono-(2-etylhexyl) ester of phosphoric acid (M2EHPA) and bis-(2-etylhexyl) ester of phosphoric acid (D2EHPA) as carriers is presented. Parameters affecting the Cd2+ and Zn2+ pertraction such as feed concentration, carrier concentration, pH of the stripping phase, and TBP (tributyl phosphate) concentration were analyzed using the Taguchi method. Optimal experimental conditions for Cd2+ and Zn2+ pertraction were obtained using the analysis of variance (ANOVA) after a 6 h separation with the initial feed concentration of 8.9 × 10−4 mol L−1, carrier concentration of 20 vol. %, TBP concentration of 4 vol. %, and pH of 0.5. Then, under optimum conditions, a comparison of M2EHPA, D2EHPA, and bis-(2,4,4-trimethylpentyl)monothiophosphinic acid (Cyanex 302) was performed. Effective pertraction of Cd2+ and Zn2+ using these carriers was observed in the following order: mixture of M2EHPA and D2EHPA, D2EHPA, Cyanex 302. It was also found that the presence of one metal ion in the feed solution reduces the pertraction rate of the other one.

[1] Alguacil, F. J., & Navarro, P. (2001). Permeation of cadmium through a supported liquid membrane impregnated with CYANEX 923. Hydrometallurgy, 61, 137–142. DOI: 10.1016/s0304-386x(01)00163-3. http://dx.doi.org/10.1016/S0304-386X(01)00163-310.1016/S0304-386X(01)00163-3Search in Google Scholar

[2] Ata, O. N., Beşe, A. V., Çolak, S., Dönmez, B., & Çakıcı, A. (2004). Effect of parameters on the transport of zinc ion through supported liquid membrane. Chemical Engineering and Processing: Process Intensification, 43, 895–903. DOI: 10.1016/s0255-2701(03)00113-2. http://dx.doi.org/10.1016/S0255-2701(03)00113-210.1016/S0255-2701(03)00113-2Search in Google Scholar

[3] Balchen, M., Jensen, H., Reubsaet, L., & Pedersen-Bjergaard, S. (2010). Potential-driven peptide extractions across supported liquid membranes: Investigation of principal operational parameters. Journal of Separation Science, 33, 1665–1672. DOI: 10.1002/jssc.201000025. http://dx.doi.org/10.1002/jssc.20100002510.1002/jssc.201000025Search in Google Scholar

[4] Breembroek, G. R. M., van Straalen, A., Witkamp, G. J., & van Rosmalen, G. M. (1998). Extraction of cadmium and copper using hollow fiber supported liquid membranes. Journal of Membrane Science, 146, 185–195. DOI: 10.1016/s0376-7388(98)00099-4. http://dx.doi.org/10.1016/S0376-7388(98)00099-410.1016/S0376-7388(98)00099-4Search in Google Scholar

[5] Chimuka, L., Cukrowska, E., Soko, L., & Naicker, K. (2003). Supported-liquid membrane extraction as a selective sample preparation technique for monitoring uranium in complex matrix samples. Journal of Separation Science, 26, 601–608. DOI: 10.1002/jssc.200390082. http://dx.doi.org/10.1002/jssc.20039008210.1002/jssc.200390082Search in Google Scholar

[6] Doležal, J., Moreno, C., Hrdlička, A., & Valiente, M. (2000). Selective transport of lanthanides through supported liquid membranes containing non-selective extractant, di-(2-ethylhexyl)phosphoric acid, as a carrier. Journal of Membrane Science, 168, 175–181. DOI: 10.1016/s0376-7388(99)00311-7. http://dx.doi.org/10.1016/S0376-7388(99)00311-710.1016/S0376-7388(99)00311-7Search in Google Scholar

[7] Dżygiel, P., Wieczorek, P., & Kafarski, P. (2003). Supported liquid membrane separation of amine and amino acid derivatives with chiral esters of phosphoric acids as carriers. Journal of Separation Science, 26, 1050–1056. DOI: 10.1002/jssc.200301445. http://dx.doi.org/10.1002/jssc.20030144510.1002/jssc.200301445Search in Google Scholar

[8] Feng, Y. D., Tan, Z. Q., & Liu, J. F. (2011). Development of a static and exhaustive extraction procedure for field passive preconcentration of chlorophenols in environmental waters with hollow fiber-supported liquid membrane. Journal of Separation Science, 34, 965–970. DOI: 10.1002/jssc.201000775. http://dx.doi.org/10.1002/jssc.20100077510.1002/jssc.201000775Search in Google Scholar PubMed

[9] Gaikwad, A. G. (2009). Studies on carbonate ion transport through supported liquid membrane using primene JMT and tributyl phosphate. Separation Science and Technology, 44, 2626–2644. DOI: 10.1080/01496390902886062. http://dx.doi.org/10.1080/0149639090288606210.1080/01496390902886062Search in Google Scholar

[10] Haghshenas Fatmehsari, D., Darvishi, D., Etemadi, S., Eivazi Hollagh, A. R., Keshavarz Alamdari, E., & Salardini, A. A. (2009). Interaction between TBP and D2EHPA during Zn, Cd, Mn, Cu, Co and Ni solvent extraction: A thermodynamic and empirical approach. Hydrometallurgy, 98, 143–147. DOI: 10.1016/j.hydromet.2009.04.010. http://dx.doi.org/10.1016/j.hydromet.2009.04.01010.1016/j.hydromet.2009.04.010Search in Google Scholar

[11] Haji Shabani, A. M., Dadfarnia, S., Motavaselian, F., & Ahmadi, S. H. (2009). Separation and preconcentration of cadmium ions using octadecyl silica membrane disks modified by methyltrioctylammonium chloride. Journal of Hazardous Materials, 162, 373–377. DOI: 10.1016/j.jhazmat.2008.05.049. http://dx.doi.org/10.1016/j.jhazmat.2008.05.04910.1016/j.jhazmat.2008.05.049Search in Google Scholar PubMed

[12] Hasan, S. H., Talat, M., & Rai, S. (2007). Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). Bioresource Technology, 98, 918–928. DOI: 10.1016/j.biortech.2006.02.042. http://dx.doi.org/10.1016/j.biortech.2006.02.04210.1016/j.biortech.2006.02.042Search in Google Scholar PubMed

[13] Kazemi, M., Alamdari, E. K., Darvishi, D., Esfandyari, G. R., & Salardini, A. A. (2012). Extraction and permeation of cadmium ions through supported liquid membrane impregnated with mixtures of D2EHPA and M2EHPA. Canadian Metallurgical Quarterly, 51, 101–104. DOI: 10.1179/1879139511y.0000000027. http://dx.doi.org/10.1179/1879139511Y.000000002710.1179/1879139511Y.0000000027Search in Google Scholar

[14] Keleş, O. (2009). An optimization study on the cementation of silver with copper in nitrate solutions by Taguchi design. Hydrometallurgy, 95, 333–336. DOI: 10.1016/j.hydromet.2008.07.006. http://dx.doi.org/10.1016/j.hydromet.2008.07.00610.1016/j.hydromet.2008.07.006Search in Google Scholar

[15] Keshavarz Alamdari, E., Moradkhani, D., Darvishi, D., Askari, M., & Behnian, D. (2004). Synergistic effect of MEHPA on co-extraction of zinc and cadmium with DEHPA. Minerals Engineering, 17, 89–92. DOI: 10.1016/j.mineng.2003.10.003. http://dx.doi.org/10.1016/j.mineng.2003.10.00310.1016/j.mineng.2003.10.003Search in Google Scholar

[16] Kislik, V. S. (Ed.) (2010). Liquid membranes: Principles and application in chemical separation and wastewater treatment. Amsterdam, The Netherlands: Elsevier. Search in Google Scholar

[17] Kumbasar, R. A. (2009). Extraction and concentration study of cadmium from zinc plant leach solutions by emulsion liquid membrane using trioctylamine as extractant. Hydrometallurgy, 95, 290–296. DOI: 10.1016/j.hydromet.2008.07.001. http://dx.doi.org/10.1016/j.hydromet.2008.07.00110.1016/j.hydromet.2008.07.001Search in Google Scholar

[18] Madaeni, S. S., & Koocheki, S. (2006). Application of taguchi method in the optimization of wastewater treatment using spiral-wound reverse osmosis element. Chemical Engineering Journal, 119, 37–44. DOI: 10.1016/j.cej.2006.03.002. http://dx.doi.org/10.1016/j.cej.2006.03.00210.1016/j.cej.2006.03.002Search in Google Scholar

[19] Marták, J., Schlosser, Š., & Vlčková, S. (2008). Pertraction of lactic acid through supported liquid membranes containing phosphonium ionic liquid. Journal of Membrane Science, 318, 298–310. DOI: 10.1016/j.memsci.2008.02.064. http://dx.doi.org/10.1016/j.memsci.2008.02.06410.1016/j.memsci.2008.02.064Search in Google Scholar

[20] Marták, J., Schlosser, Š., & Blahušiak, M. (2011). Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane. Chemical Papers, 65, 608–619. DOI: 10.2478/s11696-011-0069-3. http://dx.doi.org/10.2478/s11696-011-0069-310.2478/s11696-011-0069-3Search in Google Scholar

[21] Mortaheb, H. R., Kosuge, H., Mokhtarani, B., Amini, M. H., & Banihashemi, H. R. (2009). Study on removal of cadmium from wastewater by emulsion liquid membrane. Journal of Hazardous Materials, 165, 630–636. DOI: 10.1016/j.jhazmat.2008.10.039. http://dx.doi.org/10.1016/j.jhazmat.2008.10.03910.1016/j.jhazmat.2008.10.039Search in Google Scholar PubMed

[22] Mousavi, S. M., Yaghmaei, S., Jafari, A., Vossoughi, M., & Ghobadi, Z. (2007). Optimization of ferrous biooxidation rate in a packed bed bioreactor using Taguchi approach. Chemical Engineering and Processing: Process Intensification, 46, 935–940. DOI: 10.1016/j.cep.2007.06.010. http://dx.doi.org/10.1016/j.cep.2007.06.01010.1016/j.cep.2007.06.010Search in Google Scholar

[23] Parhi, P. K., Das, N. N., & Sarangi, K. (2009). Extraction of cadmium from dilute solution using supported liquid membrane. Journal of Hazardous Materials, 172, 773–779. DOI: 10.1016/j.jhazmat.2009.07.063. http://dx.doi.org/10.1016/j.jhazmat.2009.07.06310.1016/j.jhazmat.2009.07.063Search in Google Scholar PubMed

[24] Rehman, S. u., Akhtar, G., Chaudry, M. A., Bukhari, N., Najeebullah, & Ali, N. (2011). Mn (VII) ions transport by triethanolamine cyclohexanone based supported liquid membrane and recovery of Mn (II) ions from discharged zinc carbon dry battery cell. Journal of Membrane Science, 366, 125–131. DOI: 10.1016/j.memsci.2010.09.049. http://dx.doi.org/10.1016/j.memsci.2010.09.04910.1016/j.memsci.2010.09.049Search in Google Scholar

[25] Seeder, J. D., Henley, E. J., & Roper, D. K. (2011). Separation process principles (3rd ed.). Hoboken, NJ, USA: Wiley. Search in Google Scholar

[26] Silva, E. L., dos Santos Roldan, P., & Giné, M. F. (2009). Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry. Journal of Hazardous Materials, 171, 1133–1138. DOI: 10.1016/j.jhazmat.2009.06.127 http://dx.doi.org/10.1016/j.jhazmat.2009.06.12710.1016/j.jhazmat.2009.06.127Search in Google Scholar PubMed

[27] Swain, B., Jeong, J. K., Lee, J. C., & Lee, G. H. (2007). Extraction of Co(II) by supported liquid membrane and solvent extraction using Cyanex 272 as an extractant: A comparison study. Journal of Membrane Science, 288, 139–148. DOI: 10.1016/j.memsci.2006.11.012. http://dx.doi.org/10.1016/j.memsci.2006.11.01210.1016/j.memsci.2006.11.012Search in Google Scholar

[28] Touati, M., Benna-Zayani, M., Kbir-Ariguib, N., Trabelsi-Ayadi, M., Buch, A., Grossiord, J. L., Pareau, D., & Stambouli, M. (2009). Extraction of cadmium (II) from phosphoric acid media using the di(2-ethylhexyl)dithiophosphoric acid (D2EHDTPA): Feasibility of a continuous extractionstripping process. Hydrometallurgy, 95, 135–140. DOI: 10.1016/j.hydromet.2008.05.012. http://dx.doi.org/10.1016/j.hydromet.2008.05.01210.1016/j.hydromet.2008.05.012Search in Google Scholar

[29] Trtić-Petrović, T. M., Kumrić, K. R., ĐorĐević, J. S., & Vladisavljević, G. T. (2010). Extraction of lutetium(III) from aqueous solutions by employing a single fibre-supported liquid membrane. Journal of Separation Science, 33, 2002–2009. DOI: 10.1002/jssc.201000042. http://dx.doi.org/10.1002/jssc.20100004210.1002/jssc.201000042Search in Google Scholar PubMed

Published Online: 2013-1-9
Published in Print: 2013-4-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 18.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0310-3/html
Scroll to top button