Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 3, 2013

Influence of ethanol on the chain-ordering of carbonised polyaniline

  • Zuzana Morávková EMAIL logo , Miroslava Trchová , Elena Tomšík and Jaroslav Stejskal
From the journal Chemical Papers

Abstract

Polyaniline (PANI) was prepared by the oxidation of aniline hydrochloride with ammonium peroxydisulphate in water or in a water-ethanol mixture. In the presence of ethanol, PANI nanotubes and nanorods were observed. Both products were carbonised in a nitrogen atmosphere at 650°C. Initial and carbonised products were characterised by scanning and transmission electron microscopies, thermogravimetric analysis and wide-angle X-ray scattering. Their molecular structure was studied by UV-VIS, infrared, and Raman spectroscopies. Carbonised sample obtained from the PANI salt prepared in the presence of ethanol exhibits Raman spectrum which corresponds to a more ordered carbon-like material than carbonised samples obtained from the PANI base and the PANI salt prepared in pure water. The influence of ethanol present in the reaction mixture on the molecular and supra-molecular structure of PANI and, consequently, on the enhancement of chainordering of carbonised PANI is discussed.

[1] Boyer, M. I., Quillard, S., Rebourt, E., Louarn, G., Buisson, J. P., Monkman, A., & Lefrant, S. (1998). Vibrational analysis of polyaniline: A model compound approach. The Journal of Physical Chemistry B, 102, 7382–7392. DOI: 10.1021/jp972652o. http://dx.doi.org/10.1021/jp972652o10.1021/jp972652oSearch in Google Scholar

[2] Chiou, N. R., Lee, L. J., & Epstein, A. J. (2007). Self-assembled polyaniline nanofibers/nanotubes. Chemistry of Materials, 19, 3589–3591. DOI: 10.1021/cm070847v. http://dx.doi.org/10.1021/cm070847v10.1021/cm070847vSearch in Google Scholar

[3] Cho, Y. J., Kim, H. S., Baik, S. Y., Myung, Y., Jung, C. S., Kim, C. H., Park, J., & Kang, H. S. (2011). Selective nitrogen-doping structure of nanosize graphitic layers. The Journal of Physical Chemistry C, 115, 3737–3744. DOI: 10.1021/jp112141f. http://dx.doi.org/10.1021/jp112141f10.1021/jp112141fSearch in Google Scholar

[4] Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2008). The chemical oxidative polymerization of aniline in water: Raman spectroscopy. Journal of Raman Spectroscopy, 39, 1375–1387. DOI:10.1002/jrs.2007. http://dx.doi.org/10.1002/jrs.200710.1002/jrs.2007Search in Google Scholar

[5] Ćirić-Marjanović, G., Dragičević, L., Milojević, M., Mojović, M., Mentus, S., Dojčinović, B., Marjanović, B., & Stejskal, J. (2009). Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites. The Journal of Physical Chemistry B, 113, 7116–7127. DOI: 10.1021/jp900096b. http://dx.doi.org/10.1021/jp900096b10.1021/jp900096bSearch in Google Scholar

[6] Cochet, M., Louarn, G., Quillard, S., Boyer, M. I., Buisson, J. P., & Lefrant, S. (2000). Theoretical and experimental vibrational study of polyaniline in base forms: non-planar analysis. Part I. Journal of Raman Spectroscopy, 31, 1029–1039. DOI:10.1002/1097-4555(200011)31:11〈1029::aid-jrs640〉3.0.co;2-a. http://dx.doi.org/10.1002/1097-4555(200011)31:11<1029::AID-JRS640>3.0.CO;2-A10.1002/1097-4555(200011)31:11<1029::AID-JRS640>3.0.CO;2-ASearch in Google Scholar

[7] Colomban, Ph., Folch, S., & Gruger, A. (1999). Vibrational study of short-range order and structure of polyaniline bases and salts. Macromolecules, 32, 3080–3092. DOI: 10.1021/ma981018l. http://dx.doi.org/10.1021/ma981018l10.1021/ma981018lSearch in Google Scholar

[8] Cuesta, A., Dhamelincourt, P., Laureyns, J., Matrínez-Alonso, A., & Tascón, J. M. D. (1994) Raman microprobe studies on carbon materials. Carbon, 32, 1523–1532. DOI: 10.1016/0008-6223(94)90148-1. http://dx.doi.org/10.1016/0008-6223(94)90148-110.1016/0008-6223(94)90148-1Search in Google Scholar

[9] do Nascimento, G. M., Silva, C. H. B., & Temperini, M. L. A. (2006). Electronic structure and doping behaviour of PANI-NSA nanofibers investigated by resonance Raman spectroscopy. Macromolecular Rapid Communications, 27, 255–259. DOI: 10.1002/marc.200500690. http://dx.doi.org/10.1002/marc.20050069010.1002/marc.200500690Search in Google Scholar

[10] do Nascimento, G. M., Silva, C. H. B., & Temperini, M. L. A. (2008). Spectroscopic characterisation of the structural changes of polyaniline nanofibres after heating. Polymer Degradation and Stability, 93, 291–297. DOI: 10.1016/j.polymdegradstab.2007.09.001. http://dx.doi.org/10.1016/j.polymdegradstab.2007.09.00110.1016/j.polymdegradstab.2007.09.001Search in Google Scholar

[11] El Khalki, A., Gruger, A., & Colomban, P. (2003). Bulksurface nanostructure and defects in polyaniline films and fibres. Synthetic Metals, 139, 215–220. DOI: 10.1016/s0379-6779(03)00129-2. http://dx.doi.org/10.1016/S0379-6779(03)00129-210.1016/S0379-6779(03)00129-2Search in Google Scholar

[12] Epstein, A. J., Ginder, J. M., Zuo, F., Bigelow, R., Woo, H. S., Tanner, D. B., Richter, A. F., Huang, W. S., & MacDiarmid, A. G. (1987). Insulator-to-metal transition in polyaniline. Synthetic Metals, 18, 303–309. DOI: 10.1016/0379-6779(87)90896-4. http://dx.doi.org/10.1016/0379-6779(87)90896-410.1016/0379-6779(87)90896-4Search in Google Scholar

[13] Ferrari, A. C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications, 143, 47–57. DOI:10.1016/j.ssc.2007.03.052. http://dx.doi.org/10.1016/j.ssc.2007.03.05210.1016/j.ssc.2007.03.052Search in Google Scholar

[14] Folch, S., Gruger, A., Régis, A., & Colomban, Ph. (1996). Optical and vibrational spectra of sols/solutions of polyaniline: water as secondary dopant. Synthetic Metals, 81, 221–225. DOI: 10.1016/s0379-6779(96)03745-9. http://dx.doi.org/10.1016/S0379-6779(96)03745-910.1016/S0379-6779(96)03745-9Search in Google Scholar

[15] Furukawa, Y., Ueda, F., Hyodo, Y., Harada, I., Nakajima, T., & Kawagoe, T. (1988). Vibrational spectra and structure of polyaniline. Macromolecules, 21, 1297–1305. DOI: 10.1021/ma00183a020. http://dx.doi.org/10.1021/ma00183a02010.1021/ma00183a020Search in Google Scholar

[16] Geng, Y. H., Li, J., Sun, Z. C., Jing, X. B., & Wang, F. S. (1998). Polymerization of aniline in an aqueous system containing organic solvents. Synthetic Metals, 96, 1–6. DOI: 10.1016/s0379-6779(98)00032-0. http://dx.doi.org/10.1016/S0379-6779(98)00032-010.1016/S0379-6779(98)00032-0Search in Google Scholar

[17] Ghiurea, M., Spataru, C. I., Donescu, D., & Constantinescu, L. M. (2011). Aniline polymarization in ethanol-water mixtures. Revista de Materiale Plastice, 48, 263–267. Search in Google Scholar

[18] Gruger, A., El Khalki, A., & Colomban, Ph. (2003). Protonation, sol formation and precipitation of poly- and oligoanilines. Journal of Raman Spectroscopy, 34, 438–450. DOI: 10.1002/jrs.1018. http://dx.doi.org/10.1002/jrs.101810.1002/jrs.1018Search in Google Scholar

[19] Huang, W. S., & MacDiarmid, A. G. (1993). Optical properties of polyaniline. Polymer, 34, 1833–1845. DOI: 10.1016/0032-3861(93)90424-9. http://dx.doi.org/10.1016/0032-3861(93)90424-910.1016/0032-3861(93)90424-9Search in Google Scholar

[20] Huang, J. X., & Kaner, R. B. (2004). Flash welding of conducting polymer nanofibres. Nature Materials, 3, 783–786. DOI: 10.1038/nmat1242. http://dx.doi.org/10.1038/nmat124210.1038/nmat1242Search in Google Scholar PubMed

[21] Huang, Y. F., & Lin, C. W. (2009). Introduction of methanol in the formation of polyaniline nanotubes in an acid-free aqueous solution through a self-curling process. Polymer, 50, 775–782. DOI:10.1016/j.polymer.2008.12.016. http://dx.doi.org/10.1016/j.polymer.2008.12.01610.1016/j.polymer.2008.12.016Search in Google Scholar

[22] Huang, Y. F., & Lin, C. W. (2010a). Exploration of the morphological transition phenomenon of polyaniline from microspheres to nanotubes in acid-free aqueous 1-propanol solution in a single polymerization process. Polymer International, 59, 1226–1232. DOI: 10.1002/pi.2852. http://dx.doi.org/10.1002/pi.285210.1002/pi.2852Search in Google Scholar

[23] Huang, Y. F., & Lin, C. W. (2010b). The structure changeinduced morphology transition of polyaniline in 1.6-hexanediol aqueous and acid-free solutions: From submicronspheres to nanofibers. Synthetic Metals, 160, 384–389. DOI:10.1016/j.synthmet.2009.11.011. http://dx.doi.org/10.1016/j.synthmet.2009.11.01110.1016/j.synthmet.2009.11.011Search in Google Scholar

[24] Jin, C., Nagaiah, T. C., Xia, W., Spliethoff, B., Wang, S. S., Bron, M., Schuhmann, W., & Muhler, M. (2010). Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline. Nanoscale, 2, 981–987. DOI: 10.1039/b9nr00405j. http://dx.doi.org/10.1039/b9nr00405j10.1039/b9nr00405jSearch in Google Scholar PubMed

[25] Kan, J. Q., Lv, R., & Zhang, S. L. (2004). Effect of ethanol on properties of electrochemically synthesized polyaniline. Synthetic Metals, 145, 37–42. DOI:10.1016/j.synthmet.2004.04.017. http://dx.doi.org/10.1016/j.synthmet.2004.04.01710.1016/j.synthmet.2004.04.017Search in Google Scholar

[26] Kan, J. Q., Zhang, S. L., & Jing, G. L. (2006). Effect of ethanol on chemically synthesized polyaniline nanothread. Journal of Applied Polymer Science, 99, 1848–1853. DOI: 10.1002/app.22345. http://dx.doi.org/10.1002/app.2234510.1002/app.22345Search in Google Scholar

[27] Kim, D. P., Lin, C. L., Mihalisin, T., Heiney, P., & Labes, M. M. (1991). Electronic properties of nitrogen-doped graphite flakes. Chemistry of Materials, 3, 686–692. DOI: 10.1021/cm00016a023. http://dx.doi.org/10.1021/cm00016a02310.1021/cm00016a023Search in Google Scholar

[28] Konyushenko, E. N., Stejskal, J., Šeděnková, I., Trchová, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006a). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI:10.1002/pi.1899. http://dx.doi.org/10.1002/pi.189910.1002/pi.1899Search in Google Scholar

[29] Konyushenko, E. N., Trchová, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-z10.2478/s11696-009-0101-zSearch in Google Scholar

[30] Konyushenko, E. N., Stejskal, J., Trchová, M., & Prokeš, J. (2011a). Suspension polymerization of aniline hydrochloride in non-aqueous media. Polymer International, 60, 794–797. DOI: 10.1002/pi.3017. http://dx.doi.org/10.1002/pi.301710.1002/pi.3017Search in Google Scholar

[31] Konyushenko, E. N., Reynaud, S., Pellerin, V., Trchová, M., Stejskal, J., & Sapurina, I. (2011b). Polyaniline prepared in ethylene glycol or glycerol. Polymer, 52, 1900–1907. DOI:10.1016/j.polymer.2011.02.047. http://dx.doi.org/10.1016/j.polymer.2011.02.04710.1016/j.polymer.2011.02.047Search in Google Scholar

[32] Langer, J. J., & Golczak, S. (2007). Highly carbonized polyaniline micro- and nanotubes. Polymer Degradation and Stability, 92, 330–334. DOI:10.1016/j.polymdegradstab.2006.07.018. http://dx.doi.org/10.1016/j.polymdegradstab.2006.07.01810.1016/j.polymdegradstab.2006.07.018Search in Google Scholar

[33] Larouche, N., & Stansfield, B. L. (2010). Classifying nanostrucctured carbons using graphitic indices derived from Raman spectra. Carbon, 48, 620–629. DOI:10.1016/j.carbon.2009.10.002. http://dx.doi.org/10.1016/j.carbon.2009.10.00210.1016/j.carbon.2009.10.002Search in Google Scholar

[34] Lei, Z. B., Zhao, M. Y., Dang, L. Q., An, L. Z., Lu, M., Lo, A. Y., Yu, N. Y., & Liu, S. B. (2009). Structural evolution and electrocatalytic application of nitrogen-doped carbon shells synthesized by pyrolysis of near-monodisperse polyaniline nanospheres. Journal of Materials Chemistry, 19, 5985–5995. DOI: 10.1039/b908223a. http://dx.doi.org/10.1039/b908223a10.1039/b908223aSearch in Google Scholar

[35] Li, L. M., Liu, E. H., Li, J., Yang, Y. J., Shen, H. J., Huang, Z. Z., Xiang, X. X., & Li, W. (2010). A doped activated carbon prepared from polyaniline for high performance supercapacitors. Journal of Power Sources, 195, 1516–1521. DOI:10.1016/j.jpowsour.2009.09.016. http://dx.doi.org/10.1016/j.jpowsour.2009.09.01610.1016/j.jpowsour.2009.09.016Search in Google Scholar

[36] Li, Y. L., Wang, J. J., Li, X. F., Liu, J., Geng, D. S., Yang, J. L., Li, R. Y., & Sun, X. L. (2011). Nitrogendoped carbon nanotubes as cathode for lithium-air batteries. Electrochemistry Communications, 13, 668–672. DOI:10.1016/j.elecom.2011.04.004. http://dx.doi.org/10.1016/j.elecom.2011.04.00410.1016/j.elecom.2011.04.004Search in Google Scholar

[37] Lin, L., Niu, H. J., Zhang, M. L., Song, W., Wang, Z., & Bai, X. D. (2008). Electron field emission from amorphous carbon with N-doped nanostructures pyrolysed form polyaniline. Applied Surface Science, 254, 7250–7254. DOI:10.1016/j.apsusc.2008.05.347. http://dx.doi.org/10.1016/j.apsusc.2008.05.34710.1016/j.apsusc.2008.05.347Search in Google Scholar

[38] Louarn, G., Lapkowski, M., Quillard, S., Pron, A., Buisson, J. P., & Lefrant, S. (1996). Vibrational properties of polyaniline — isotope effects. The Journal of Physical Chemistry, 100, 6998–7006. DOI: 10.1021/jp953387e. http://dx.doi.org/10.1021/jp953387e10.1021/jp953387eSearch in Google Scholar

[39] Lucchese, M. M., Stavale, F., Martins Ferreira, E. H., Vilani, C., Moutinho, M. V. O., Capaz, R. B., Achete, C. A., & Jorio, A. (2010). Quantifying ion-iduced defects and Raman relaxation length in graphene. Carbon, 48, 1592–1599. DOI:10.1016/j.carbon.2009.12.057. http://dx.doi.org/10.1016/j.carbon.2009.12.05710.1016/j.carbon.2009.12.057Search in Google Scholar

[40] MacDiarmid, A. G., Chiang, J. C., Richter, A. F., & Epstein, A. J. (1987). Polyaniline: a new concept in conducting polymers. Synthetic Metals, 18, 285–290. DOI: 10.1016/0379-6779(87)90893-9. http://dx.doi.org/10.1016/0379-6779(87)90893-910.1016/0379-6779(87)90893-9Search in Google Scholar

[41] Mentus, S., Ćirić-Marjanović, G., Trchová, M., & Stejskal, J. (2009). Conducting carbonized polyaniline nanotubes. Nanotechnology, 20, 245601. DOI: 10.1088/0957-4484/20/24/245601. http://dx.doi.org/10.1088/0957-4484/20/24/24560110.1088/0957-4484/20/24/245601Search in Google Scholar PubMed

[42] Morávková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2012a). The carbonization of thin polyaniline films. Thin Solid Films, 520, 6088–6094. DOI:10.1016/j.tsf.2012.05.067. http://dx.doi.org/10.1016/j.tsf.2012.05.06710.1016/j.tsf.2012.05.067Search in Google Scholar

[43] Morávková, Z., Trchová, M., Tomšík, E., Čechvala, J., & Stejskal, J. (2012b). Enhanced thermal stability of multiwalled carbon nanotubes after coating with polyaniline salt. Polymer Degradation and Stability, 97, 1405–1414. DOI:10.1016/j.polymdegradstab.2012.05.019. http://dx.doi.org/10.1016/j.polymdegradstab.2012.05.01910.1016/j.polymdegradstab.2012.05.019Search in Google Scholar

[44] Nemanich, R. J., & Solin, S. A. (1979). First- and second-order Raman scattering from finite-size crystals of graphite. Physical Review B, 20, 392–401. DOI: 10.1103/physrevb.20.392. http://dx.doi.org/10.1103/PhysRevB.20.39210.1103/PhysRevB.20.392Search in Google Scholar

[45] Park, M. C., Sun, Q. H., & Deng, Y. L. (2007). Polyaniline microspheres consisting of highly crystallized nanorods. Macromolecular Rapid Communications, 28, 1237–1242. DOI:10.1002/marc.200700066. http://dx.doi.org/10.1002/marc.20070006610.1002/marc.200700066Search in Google Scholar

[46] Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cançado, L. G., Jorio, A., & Saito, R. (2007). Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 9, 1276–1291. DOI: 10.1039/b613962k. http://dx.doi.org/10.1039/b613962k10.1039/B613962KSearch in Google Scholar

[47] Pouget, J. P., Józefowicz, M. E., Epstein, A. J., Tang, X., & MacDiarmid, A. G. (1991). X-ray structure of polyaniline. Macromolecules, 24, 779–789. DOI: 10.1021/ma00003a022. http://dx.doi.org/10.1021/ma00003a02210.1021/ma00003a022Search in Google Scholar

[48] Rozlívková, Z., Trchová, M., Exnerová, M., & Stejskal, J. (2011a). The carbonization of granular polyaniline to produce nitrogen-containing carbon. Synthetic Metals, 161, 1122–1129. DOI:10.1016/j.synthmet.2011.03.034. http://dx.doi.org/10.1016/j.synthmet.2011.03.03410.1016/j.synthmet.2011.03.034Search in Google Scholar

[49] Rozlívková, Z., Trchová, M., Šeděnková, I., Špírková, M., & Stejskal, J. (2011b). Structure and stability of thin polyaniline films deposited in situ on silicon and gold during precipitation and dispersion polymerization of aniline hydrochloride. Thin Solid Films, 519, 5933–5941. DOI:10.1016/j.tsf.2011.03.025. http://dx.doi.org/10.1016/j.tsf.2011.03.02510.1016/j.tsf.2011.03.025Search in Google Scholar

[50] Šeděnková, I., Trchová, M., Blinova, N. V., & Stejskal, J. (2006). In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films, 515, 1640–1646. DOI:10.1016/j.tsf.2006.05.038. 10.1016/j.tsf.2006.05.038Search in Google Scholar

[51] Šeděnková, I., Trchová, M., Stejskal, J., & Bok, J. (2007). Polymerization of aniline in the solutions of strong and weak acids: The evolution of infrared spectra and their interpretation using factor analysis. Applied Spectroscopy, 61, 1153–1163. DOI:10.1366/000370207782597058. http://dx.doi.org/10.1366/00037020778259705810.1366/000370207782597058Search in Google Scholar PubMed

[52] Šeděnková, I., Trchová, M., & Stejskal, J. (2008). Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water — FTIR and Raman spectroscopic studies. Polymer Degradation and Stability, 93, 2147–2157. DOI:10.1016/j.polymdegradstab.2008.08.007. http://dx.doi.org/10.1016/j.polymdegradstab.2008.08.00710.1016/j.polymdegradstab.2008.08.007Search in Google Scholar

[53] Shao, Y. Y., Sui, J. H., Yin, G. P., & Gao, Y. Z. (2008). Nitrogen-doped carbon nanostructures and their composites as catalytic materials for proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 79, 89–99. DOI:10.1016/j.apcatb.2007.09.047. http://dx.doi.org/10.1016/j.apcatb.2007.09.04710.1016/j.apcatb.2007.09.047Search in Google Scholar

[54] Song, G. P., Han, J., & Guo, R. (2007). Synthesis of polyaniline/NiO nanobelts by a self-assembly process. Synthetic Metals, 157, 170–175. DOI:10.1016/j.synthmet.2006.12.007. http://dx.doi.org/10.1016/j.synthmet.2006.12.00710.1016/j.synthmet.2006.12.007Search in Google Scholar

[55] Stejskal, J., & Gilbert, R. G. (2002). Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure and Applied Chemistry, 74, 857–867. DOI:10.1351/pac200274050857. http://dx.doi.org/10.1351/pac20027405085710.1351/pac200274050857Search in Google Scholar

[56] Stejskal, J., Trchová, M., & Sapurina, I. (2005). Flameretardant effect of polyaniline coating deposited on cellulose fibers. Journal of Applied Polymer Science, 98, 2347–2354. DOI: 10.1002/app.22144. http://dx.doi.org/10.1002/app.2214410.1002/app.22144Search in Google Scholar

[57] Stejskal, J., Sapurina, I., Trchová, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI:10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Search in Google Scholar

[58] Stejskal, J., Trchová, M., Brodinová, J., & Sapurina, I. (2007). Flame retardancy afforded by polyaniline deposited on wood. Journal of Applied Polymer Science, 103, 24–30. DOI: 10.1002/app.23873. http://dx.doi.org/10.1002/app.2387310.1002/app.23873Search in Google Scholar

[59] Stejskal, J., Sapurina, I., Trchová, M., & Konyushenko, E. N. (2008). Oxidation of aniline: Polyaniline granules, nanotubes, and oligoaniline microspheres. Macromolecules, 41, 3530–3536. DOI: 10.1021/ma702601q. http://dx.doi.org/10.1021/ma702601q10.1021/ma702601qSearch in Google Scholar

[60] Stejskal, J., Sapurina, I., & Trchová, M. (2010a). Polyaniline nanostructures and the role of aniline oligomers in their formation. Progress in Polymer Science, 35, 1420–1481. DOI:10.1016/j.progpolymsci.2010.07.006. http://dx.doi.org/10.1016/j.progpolymsci.2010.07.00610.1016/j.progpolymsci.2010.07.006Search in Google Scholar

[61] Stejskal, J., Trchová, M., Hromádková, J., Kovářová, J., & Kalendová, A. (2010b). The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues. Polymer International, 59, 875–878. DOI: 10.1002/pi.2858. http://dx.doi.org/10.1002/pi.285810.1002/pi.2858Search in Google Scholar

[62] Stejskal, J., & Trchová, M. (2012). Aniline oligomers versus polyaniline. Polymer International, 61, 240–251. DOI: 10.1002/pi.3179. http://dx.doi.org/10.1002/pi.317910.1002/pi.3179Search in Google Scholar

[63] Strong, V., Wang, Y., Patatanyan, A., Whitten, P. G., Spinks, G. M., Wallace, G. G., & Kaner, R. B. (2011). Direct submicrometer patterning of nanostructured conducting polymer films via a low-energy infrared laser. Nano Letters, 11, 3128–3135. DOI:10.1021/nl2011593. http://dx.doi.org/10.1021/nl201159310.1021/nl2011593Search in Google Scholar PubMed

[64] Sun, Y. Y., Guo, G. Z., Yang, B. H., Tian, Y., He, M. H., Liu, Y. Q., & Zhao, G. Z. (2011). Facile synthesis of polyaniline micro-rods with high yield. Synthetic Metals, 161, 2206–2210. DOI:10.1016/j.synthmet.2011.07.022. http://dx.doi.org/10.1016/j.synthmet.2011.07.02210.1016/j.synthmet.2011.07.022Search in Google Scholar

[65] Tomšík, E., Morávková, Z., Stejskal, J., Trchová, M., Šálek, P., Kovářová, J., Zemek, J., Cieslar, M., & Prokeš, J. (2013). Nitrogen-containing carbon coating of multi-wall carbon nanotubes. Chemical Papers, accepted. DOI: 10.2478/s11696-013-0348-2. 10.2478/s11696-013-0348-2Search in Google Scholar

[66] Tran, H. D., D’Arcy, J. M., Wang, Y., Beltramo, P. J., Strong, V. A., & Kaner, R. B. (2011). The oxidation of aniline to produce “polyaniline”: a process yielding many different nanoscale structures. Journal of Materials Chemistry, 21, 3534–3550. DOI: 10.1039/c0jm02699a. http://dx.doi.org/10.1039/c0jm02699a10.1039/C0JM02699ASearch in Google Scholar

[67] Trchová, M., Šeděnková, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović, G. (2006a). Evolution of polyaniline nanotubes: The oxidation of aniline in water. The Journal of Physical Chemistry B, 110, 9461–9468. DOI: 10.1021/jp057528g. http://dx.doi.org/10.1021/jp057528g10.1021/jp057528gSearch in Google Scholar PubMed

[68] Trchová, M., Matějka, P., Brodinová, J., Kalendová, A., Prokeš, J., & Stejskal, J. (2006b). Structural and conductivity changes during the pyrolysis of polyaniline base. Polymer Degradation and Stability, 91, 114–121. DOI:10.1016/j.polymdegradstab.2005.04.022. http://dx.doi.org/10.1016/j.polymdegradstab.2005.04.02210.1016/j.polymdegradstab.2005.04.022Search in Google Scholar

[69] Trchová, M., Konyushenko, E. N., Stejskal, J., Kovářov⇇ J., & Ćirić-Marjanović, G. (2009) The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polymer Degradation and Stability, 94, 929–938. DOI:10.1016/j.polymdegradstab.2009.03.001. http://dx.doi.org/10.1016/j.polymdegradstab.2009.03.00110.1016/j.polymdegradstab.2009.03.001Search in Google Scholar

[70] Trchová, M., & Stejskal, J. (2011). Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC technical report). Pure and Applied Chemistry, 83, 1803–1817. DOI: 10.1351/pac-rep-10-02-01. http://dx.doi.org/10.1351/PAC-REP-10-02-0110.1351/PAC-REP-10-02-01Search in Google Scholar

[71] van Dommele, S., de Jong, K. P., & Bitter, J. H. (2006). Nitrogen-containing carbon nanotubes as solid base catalysts. Chemistry Communications, 2006, 4859–4861. DOI: 10.1039/b610208e. http://dx.doi.org/10.1039/b610208e10.1039/b610208eSearch in Google Scholar PubMed

[72] Varma, S. J., Xavier, F., Varghese, S., & Jayalekshmi, S. (2012). Synthesis and studies of exceptionally crystalline polyaniline thin films. Polymer International, 61, 743–748. DOI: 10.1002/pi.4131. http://dx.doi.org/10.1002/pi.413110.1002/pi.4131Search in Google Scholar

[73] Wang, X., Liu, N., Yan, X., Zhang, W. J., & Wei, Y. (2005). Alkali-guided synthesis of polyaniline hollow microspheres. Chemistry Letters, 34, 42–43. DOI:10.1246/cl.2005.42. http://dx.doi.org/10.1246/cl.2005.4210.1246/cl.2005.42Search in Google Scholar

[74] Wang, X., Sun, T. L., Wang, C. Y., Wang, C., Zhang, W. J., & Wei, Y. (2010). 1H NMR determination of the doping level of doped polyaniline. Macromolecular Chemistry and Physics, 211, 1814–1819. DOI:10.1002/macp.201000194. http://dx.doi.org/10.1002/macp.20100019410.1002/macp.201000194Search in Google Scholar

[75] Watanabe, A., Mori, K., Iwasaki, Y., Nakamura, Y., & Niizuma, S. (1987). Electrochromism of polyaniline film prepared by electrochemical polymerization. Macromolecules, 20, 1793–1796. DOI: 10.1021/ma00174a015. http://dx.doi.org/10.1021/ma00174a01510.1021/ma00174a015Search in Google Scholar

[76] Wu, J. H., Tang, Q. W., Li, Q. H., & Lin, J. M. (2008a). Self-assembly growth of oriented polyaniline arrays: A morphology and structure study. Polymer, 49, 5262–5267. DOI:10.1016/j.polymer.2008.09.044. http://dx.doi.org/10.1016/j.polymer.2008.09.04410.1016/j.polymer.2008.09.044Search in Google Scholar

[77] Wu, G., Swaidan, R., Li, D. Y., & Li, N. (2008b). Enhanced methanol electro-oxidation activity of PtRu catalysts supported on heteroatom-doped carbon. Electrochimica Acta, 53, 7622–7629. DOI:10.1016/j.electacta.2008.03.082. http://dx.doi.org/10.1016/j.electacta.2008.03.08210.1016/j.electacta.2008.03.082Search in Google Scholar

[78] Wu, C. G., Chiang, C. H., & Jeng, U. S. (2008c). Phenol assisted deaggregation of polyaniline chains: Simple route to high quality polyaniline film. The Journal of Physical Chemistry B, 112, 6772–6778. DOI: 10.1021/jp800932y. http://dx.doi.org/10.1021/jp800932y10.1021/jp800932ySearch in Google Scholar

[79] Xiang, H. Q., Fang, S. B., & Jiang, Y. Y. (2002). Carbons prepared from boron-containing polymers as host materials for lithium insertion. Solid State Ionics, 148, 35–43. DOI: 10.1016/s0167-2738(02)00108-x. http://dx.doi.org/10.1016/S0167-2738(02)00108-X10.1016/S0167-2738(02)00108-XSearch in Google Scholar

[80] Yang, M., Xiang, Z. J., & Wand, G. (2012). A novel orchidlike polyaniline superstructure by solvent-thermal method. Journal of Colloid and Interface Science, 367, 49–54. DOI:10.1016/j.jcis.2011.08.086. http://dx.doi.org/10.1016/j.jcis.2011.08.08610.1016/j.jcis.2011.08.086Search in Google Scholar PubMed

[81] Zhang, Z. M., Wei, Z. X., & Wan, M. X. (2002). Nanostructures of polyaniline doped with inorganic acids. Macromolecules, 35, 5937–5942. DOI: 10.1021/ma020199v. http://dx.doi.org/10.1021/ma020199v10.1021/ma020199vSearch in Google Scholar

[82] Zhang, L. J., Peng, H., Hsu, C. F., Kilmartin, P. A., & Travas-Sejdic, J. (2007a). Self-assembled polyaniline nanotubes grown from a polymeric acid solution. Nanotechnology, 18, 115607. DOI: 10.1088/0957-4484/18/11/115607. http://dx.doi.org/10.1088/0957-4484/18/11/11560710.1088/0957-4484/18/11/115607Search in Google Scholar

[83] Zhang, L. J., Peng, H., Kilmartin, P. A., Soeller, C., & Travas-Sejdic, J. (2007b). Polymeric acid doped polyaniline nanotubes for oligonucleotide sensors. Electroanalysis, 19, 870–875. DOI:10.1002/elan.200603790. http://dx.doi.org/10.1002/elan.20060379010.1002/elan.200603790Search in Google Scholar

[84] Zhang, L. J., Zhang, Z. M., Kilmartin, P. A., & Travas-Sejdic, J. (2011). Hollow polyaniline and indomethacin composite microspheres for controlled indomethacin release. Macromolecular Chemistry and Physics, 212, 2674–2684. DOI:10.1002/macp.201100379. http://dx.doi.org/10.1002/macp.20110037910.1002/macp.201100379Search in Google Scholar

[85] Zhou, S., Wu, T., & Kan, J. Q. (2007). Effect of methanol on morphology of polyaniline. European Polymer Journal, 43, 395–402. DOI:10.1016/j.eurpolymj.2006.11.011. http://dx.doi.org/10.1016/j.eurpolymj.2006.11.01110.1016/j.eurpolymj.2006.11.011Search in Google Scholar

Published Online: 2013-5-3
Published in Print: 2013-8-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0329-5/html
Scroll to top button