Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 17, 2013

Synthesis of a photoactive gemini surfactant and its use in AGET ATRP miniemulsion polymerisation and UV curing

  • Chuan-Jie Cheng EMAIL logo , Xiong-Xiong Bai , Wu-Qin Fan , Hai-Ming Wu , Liang Shen , Qing-Hua Huang and Yuan-Ming Tu
From the journal Chemical Papers

Abstract

A novel photoactive gemini surfactant was easily synthesised in high yields. The multi-functional molecule can be used as a gemini surfactant, a benzophenone type photoinitiator, and as an ATRP initiator. Poly(methyl methacrylate) (PMMA) and poly(methyl methacrylate)-block-poly(allyl methacrylate) (PMMA-b-PAMA) were prepared using the photoactive gemini surfactant as an ATRP initiator under soap-free miniemulsion polymerisation conditions. Kinetic results of the miniemulsion polymerisation of methyl methacrylate (MMA) indicate that the reaction has controlled/living characteristics. UV curing was performed by irradiation of the linear PMMA-b-PAMA polymer, in which PMMA-b-PAMA containing a benzophenone moiety functioned as a macromolecular photoinitiator.

[1] Bai, L., Zhang, L., Zhang, Z., Zhu, J., Zhou, N., Cheng, Z., & Zhu, X. (2011). Alumina additives for fast iron-mediated AGET ATRP of MMA using onium salt as ligand. Journal of Polymer Science Part A: Polymer Chemistry, 49, 3970–3979. DOI: 10.1002/pola.24837. http://dx.doi.org/10.1002/pola.2483710.1002/pola.24837Search in Google Scholar

[2] Bai, L., Zhang, L., Cheng, Z., & Zhu, X. (2012). Activators generated by electron transfer for atom transfer radical polymerization: recent advances in catalyst and polymer chemistry. Polymer Chemistry, 3, 2685–2697. DOI: 10.1039/c2py20286g. http://dx.doi.org/10.1039/c2py20286g10.1039/c2py20286gSearch in Google Scholar

[3] Basinska, T., & Slomkowski, S. (2012). Design of polyglycidolcontaining microspheres for biomedical applications. Chemical Papers, 66, 352–368. DOI: 10.2478/s11696-011-0122-2. http://dx.doi.org/10.2478/s11696-011-0122-210.2478/s11696-011-0122-2Search in Google Scholar

[4] Benoit, D. S. W., Srinivasan, S., Shubin, A. D., & Stayton, P. S. (2011). Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery. Biomacromolecules, 12, 2708–2714. DOI: 10.1021/bm200485b. http://dx.doi.org/10.1021/bm200485b10.1021/bm200485bSearch in Google Scholar PubMed PubMed Central

[5] Brandt, W. C., de Oliveira Tomaselli, L., Correr-Sobrinho, L., & Sinhoreti, M. A. C. (2011). Can phenyl-propanedione influence Knoop hardness, rate of polymerization and bond strength of resin composite restorations? Journal of Dentistry, 39, 438–447. DOI: 10.1016/j.jdent.2011.03.009. http://dx.doi.org/10.1016/j.jdent.2011.03.00910.1016/j.jdent.2011.03.009Search in Google Scholar PubMed

[6] Braunecker, W. A., & Matyjaszewski, K. (2007). Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science, 32, 93–146. DOI: 10.1016/j.progpolymsci.2006.11.002. http://dx.doi.org/10.1016/j.progpolymsci.2006.11.00210.1016/j.progpolymsci.2006.11.002Search in Google Scholar

[7] Chen, Z., Wu, J., Fernando, S., & Jagodzinski, K. (2011). Soy-based, high biorenewable content UV curable coatings. Progress in Organic Coatings, 71, 98–109. DOI: 10.1016/j.porgcoat.2011.01.004. http://dx.doi.org/10.1016/j.porgcoat.2011.01.00410.1016/j.porgcoat.2011.01.004Search in Google Scholar

[8] Cheng, C., Shu, J., Gong, S., Shen, L., Qiao, Y., & Fu, C. (2010). Synthesis and use of a surface-active initiator in emulsion polymerization under AGET and ARGET ATRP conditions. New Journal of Chemistry, 34, 163–170. DOI: 10.1039/b9nj00307j. http://dx.doi.org/10.1039/b9nj00307j10.1039/B9NJ00307JSearch in Google Scholar

[9] Cheng, C., Shen, L., Fu, Q., & Gong, S. (2011a). Soap-free living/controlled radical emulsion polymerization. Progress in Chemistry, 23, 791–799. (in Chinese) Search in Google Scholar

[10] Cheng, C., Fu, Q., Liu, Z., Shen, L., Qiao, Y., & Fu, C. (2011b). Emulsifier-free synthesis of crosslinkable ABA triblock copolymer nanoparticles via AGET ATRP. Macromolecular Research, 19, 1048–1055. DOI: 10.1007/s13233-011-1008-4. http://dx.doi.org/10.1007/s13233-011-1008-410.1007/s13233-011-1008-4Search in Google Scholar

[11] Cheng, C. J., Fu, Q. L., Bai, X. X., Liu, S. J., Shen, L., Fan, W. Q., & Li, H. X. (2013). Facile synthesis of gemini surfaceactive ATRP initiator and its use in soap-free AGET ATRP mini-emulsion polymerisation. Chemical Papers, 67, 336–341. DOI: 10.2478/s11696-012-0271-y. http://dx.doi.org/10.2478/s11696-012-0271-y10.2478/s11696-012-0271-ySearch in Google Scholar

[12] Chu, D. S. H., Schellinger, J. G., Shi, J., Convertine, A. J., Stayton, P. S., & Pun, S. H. (2012). Application of living free radical polymerization for nucleic acid delivery. Accounts of Chemical Research, 45, 1089–1099. DOI: 10.1021/ar200242z. http://dx.doi.org/10.1021/ar200242z10.1021/ar200242zSearch in Google Scholar PubMed PubMed Central

[13] Destarac, M. (2010). Controlled radical polymerization: Industrial stakes, obstacles and achievements. Macromolecular Reaction Engineering, 4, 165–179. DOI: 10.1002/mren.200900087. http://dx.doi.org/10.1002/mren.20090008710.1002/mren.200900087Search in Google Scholar

[14] Eriksson, M., Boyer, A., Sinigoi, L., Johansson, M., Malmström, E., Hult, K., Trey, S., & Martinelle, M. (2010). One-pot enzymatic route to tetraallyl ether functional oligoesters: Synthesis, UV curing, and characterization. Journal of Polymer Science Part A: Polymer Chemistry, 48, 5289–5297. DOI: 10.1002/pola.24328. http://dx.doi.org/10.1002/pola.2432810.1002/pola.24328Search in Google Scholar

[15] Jahan, N., Paul, N., Petropolis, C. J., Marangoni, D. G., & Grindley, T. B. (2009). Synthesis of surfactants based on pentaerythritol. I. Cationic and zwitterionic gemini surfactants. The Journal of Organic Chemistry, 74, 7762–7773. DOI: 10.1021/jo9018107. 10.1021/jo9018107Search in Google Scholar PubMed

[16] Jakubowski, W., & Matyjaszewski, K. (2005). Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules, 38, 4139–4146. DOI: 10.1021/ma0 47389l. http://dx.doi.org/10.1021/ma047389lSearch in Google Scholar

[17] Jiang, H., Zhang, L., Pan, J., Jiang, X., Cheng, Z., & Zhu, X. (2012). Iron-mediated AGET ATRP of methyl methacrylate using metal wire as reducing agent. Journal of Polymer Science Part A: Polymer Chemistry, 50, 2244–2253. DOI: 10.1002/pola.26002. http://dx.doi.org/10.1002/pola.2600210.1002/pola.26002Search in Google Scholar

[18] Li, W., Matyjaszewski, K., Albrecht, K., & Möller, M. (2009). Reactive surfactants for polymeric nanocapsules via interfacially confined miniemulsion ATRP. Macromolecules, 42, 8228–8233. DOI: 10.1021/ma901574y. http://dx.doi.org/10.1021/ma901574y10.1021/ma901574ySearch in Google Scholar

[19] Lin, J., Wang, W., Wen, X., Cai, Z. Q., Pi, P., Zheng, D. F., Cheng, J., & Yang, Z. (2012). Thermal stability, curing kinetics and properties of polyurethanes system for in-mould decoration ink. Pigment & Resin Technology, 41, 351–358. DOI: 10.1108/03699421211274270. http://dx.doi.org/10.1108/0369942121127427010.1108/03699421211274270Search in Google Scholar

[20] Lindström, U. M. (Ed.) (2007). Organic reactions in water: Principles, strategies and applications. Oxford, UK: Blackwell Publishing. 10.1002/9780470988817Search in Google Scholar

[21] Lou, Q., & Shipp, D. A. (2012). Recent developments in atom transfer radical polymerization (ATRP): Methods to reduce metal catalyst concentrations. ChemPhysChem, 13, 3257–3261. DOI: 10.1002/cphc.201200166. http://dx.doi.org/10.1002/cphc.20120016610.1002/cphc.201200166Search in Google Scholar PubMed

[22] Matyjaszewski, K. (2012). Atom transfer radical polymerization (ATRP): Current status and future perspectives. Macromolecules, 45, 4015–4039. DOI: 10.1021/ma3001719. http://dx.doi.org/10.1021/ma300171910.1021/ma3001719Search in Google Scholar

[23] Miao, J., Jiang, H., Zhang, L., Wu, Z., Cheng, Z., & Zhu, X. (2012). AGET ATRP of methyl methacrylate via a bimetallic catalyst. RSC Advances, 2, 840–847. DOI: 10.1039/c1ra00456e. http://dx.doi.org/10.1039/c1ra00456e10.1039/C1RA00456ESearch in Google Scholar

[24] Mincheva, R., Paneva, D., Mespouille, L., Manolova, N., Rashkov, I., & Dubois, P. (2009). Optimized water-based ATRP of an anionic monomer: Comprehension and properties characterization. Journal of Polymer Science Part A: Polymer Chemistry, 47, 1108–1119. DOI: 10.1002/pola.23 222. http://dx.doi.org/10.1002/pola.23222Search in Google Scholar

[25] Oh, J. K., Perineau, F., Charleux, B., & Matyjaszewski, K. (2009). AGET ATRP in water and inverse miniemulsion: A facile route for preparation of high-molecular-weight biocompatible brush-like polymers. Journal of Polymer Science Part A: Polymer Chemistry, 47, 1771–1781. DOI: 10.1002/pola.23272. http://dx.doi.org/10.1002/pola.2327210.1002/pola.23272Search in Google Scholar

[26] Shen, L., Ma, C., Pu, S., Cheng, C., Xu, J., Li, L., & Fu, C. (2009). Synthesis and properties of novel photochromic poly(methyl methacrylate-co-diarylethene)s. New Journal of Chemistry, 33, 825–830. DOI: 10.1039/b813901f. http://dx.doi.org/10.1039/b813901f10.1039/b813901fSearch in Google Scholar

[27] Shu, J., Cheng, C., Zheng, Y., Shen, L., Qiao, Y., & Fu, C. (2011). “One pot” synthesis of fluorinated block copolymers using a surface-active ATRP initiator under emulsion polymerization conditions. Polymer Bulletin, 67, 1185–1200. DOI: 10.1007/s00289-011-0446-7. http://dx.doi.org/10.1007/s00289-011-0446-710.1007/s00289-011-0446-7Search in Google Scholar

[28] Tsujii, Y., Ohno, K., Yamamoto, S., Goto, A., & Fukuda, T. (2006). Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. In R. Jordan (Ed.), Surface-initiated polymerization I (Advances in polymer science series, Vol. 197, pp. 1–45). Berlin, Germany: Springer. DOI: 10.1007/12 063. http://dx.doi.org/10.1007/12_063Search in Google Scholar

[29] Tasdelen, M. A., Kahveci, M. U., & Yagci, Y. (2011). Telechelic polymers by living and controlled/living polymerization methods. Progress in Polymer Science, 36, 455–567. DOI: 10.1016/j.progpolymsci.2010.10.002. http://dx.doi.org/10.1016/j.progpolymsci.2010.10.00210.1016/j.progpolymsci.2010.10.002Search in Google Scholar

[30] Wang, H., Pan, Q., & Rempel, G. L. (2012). Organic solventfree catalytic hydrogenation of diene-based polymer nanoparticles in latex form: Part I. Preparation of nano-substrate. Journal of Polymer Science Part A: Polymer Chemistry, 50, 4656–4665. DOI: 10.1002/pola.26277. http://dx.doi.org/10.1002/pola.2627710.1002/pola.26277Search in Google Scholar

[31] Yagci, Y., Jockusch, S., & Turro, N. J. (2010). Photoinitiated polymerization: Advances, challenges, and opportunities. Macromolecules, 43, 6245–6260. DOI: 10.1021/ma1007545. http://dx.doi.org/10.1021/ma100754510.1021/ma1007545Search in Google Scholar

[32] Yan, Q., Zhou, R., Fu, C., Zhang, H., Yin, Y., & Yuan, J. (2011). CO2-responsive polymeric vesicles that breathe. Angewandte Chemie International Edition, 50, 4923–4927. DOI: 10.1002/anie.201100708. http://dx.doi.org/10.1002/anie.20110070810.1002/anie.201100708Search in Google Scholar

[33] Yilmaz, G., Beyazit, S., & Yagci, Y. (2011). Visible light induced free radical promoted cationic polymerization using thioxanthone derivatives. Journal of Polymer Science Part A: Polymer Chemistry, 49, 1591–1596. DOI: 10.1002/pola.24582. http://dx.doi.org/10.1002/pola.2458210.1002/pola.24582Search in Google Scholar

[34] Zana, R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Advances in Colloid and Interface Science, 97, 205–253. DOI: 10.1016/s0001-8686(01)00069-0. http://dx.doi.org/10.1016/S0001-8686(01)00069-010.1016/S0001-8686(01)00069-0Search in Google Scholar

[35] Zhai, S., Shang, J., Yang, D., Wang, S., Hu, J., Lu, G., & Huang, X. (2012). Successive SET-LRP and ATRP synthesis of ferrocene-based PPEGMEA-g-PAEFC welldefined amphiphilic graft copolymer. Journal of Polymer Science Part A: Polymer Chemistry, 50, 811–820. DOI: 10.1002/pola.25836. http://dx.doi.org/10.1002/pola.2583610.1002/pola.25836Search in Google Scholar

[36] Zhang, Y., Li, C., & Liu, S. (2009). One-pot synthesis of ABC miktoarm star terpolymers by coupling ATRP, ROP, and click chemistry techniques. Journal of Polymer Science Part A: Polymer Chemistry, 47, 3066–3077. DOI: 10.1002/pola.23388. http://dx.doi.org/10.1002/pola.2338810.1002/pola.23388Search in Google Scholar

[37] Zheng, Y., Cheng, C. J., Huang, H. Q., Shen, L., Fu, C. Q., & Qiao, Y. L. (2011). Fast synthesis of ATRP initiators with photoinitiating activity by urea hydrogen peroxide method. Chinese Journal of Synthetic Chemistry, 19, 376–378. (in Chinese) Search in Google Scholar

[38] Zhou, J., & Cui, Y. (2001). Measurement and calculation of HLB value of surfactants. I. The measurement of HLB value. Speciality Petrochemicals, 2001, 11–14. (in Chinese) Search in Google Scholar

[39] Zhu, X., Zhou, N., Zhang, Z., Sun, B., Yang, Y., Zhu, J., & Zhu, X. (2011). Cyclic polymers with pendent carbazole units: enhanced fluorescence and redox behavior. Angewandte Chemie International Edition, 50, 6615–6618. DOI: 10.1002/anie.201101303. http://dx.doi.org/10.1002/anie.20110130310.1002/anie.201101303Search in Google Scholar PubMed

Published Online: 2013-9-17
Published in Print: 2014-1-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0420-y/html
Scroll to top button