Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 28, 2014

MgZnAl hydrotalcite-like compounds preparation by a green method: effect of zinc content

  • Manuel Sánchez-Cantú EMAIL logo , Lydia Pérez-Díaz , Efraín Rubio-Rosas , Victor Abril-Sandoval , Jorge Merino-Aguirre , Federico Reyes-Cruz and Laura Orea
From the journal Chemical Papers

Abstract

A series of MgZnAl hydrotalcite-like compounds with different zinc content (1–25 mass % of nominal zinc content) were prepared by a simple and environmentally-friendly method. The solids were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG), nitrogen adsorption-desorption at −196°C (BET), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and CO2 temperature-programmed desorption (CO2-TPD). Transesterification of castor oil with methanol was selected as a probe reaction to stress the effect of zinc incorporation. From the XRD analysis of fresh samples it was demonstrated that the incorporation of zinc is feasible in the nominal range of 1–10 mass % while in the samples with higher zinc content, zinc nitrate and ZnO as secondary crystalline phases were observed. Furthermore, the analysis of samples calcined at 450°C indicated the coexistence of the ZnO and MgO crystalline phases. From the EDS and TG characterizations, the zinc percentage and thermal decomposition of the samples were determined. It was revealed that the samples exhibited the characteristic platy-like habit of hydrotalcite-like compounds. The BET analysis confirmed that the calcined samples presented an increment in their specific surface area values compared with the pristine ones. It was established that the amount of basic sites diminished with the zinc incorporation, which also affected the conversion degree of the transesterification reaction.

[1] Álvarez, M. G., Chimentáo, R. J., Figueras, F., & Medina, F. (2012). Tunable basic and textural properties of hydrotalcite derived materials for transesterification of glycerol. Applied Clay Science, 58, 16–24. DOI: 10.1016/j.clay.2012.02.004. http://dx.doi.org/10.1016/j.clay.2012.02.00410.1016/j.clay.2012.02.004Search in Google Scholar

[2] Babu, N. S., Sree, R., Prasad, P. S. S., & Lingaiah, N. (2008). Room-temperature transesterification of edible and nonedible oils using a heterogeneous strong basic Mg/La catalyst. Energy & Fuels, 22, 1965–1971. DOI: 10.1021/ef700687w. http://dx.doi.org/10.1021/ef700687w10.1021/ef700687wSearch in Google Scholar

[3] Bezen, M. C. I., Breitkopf, C., & Lercher, J. A. (2011). On the acid-base properties of Zn-Mg-Al mixed oxides. Applied Catalysis A: General, 399, 93–99. DOI: 10.1016/j.apcata.2011.03.053. http://dx.doi.org/10.1016/j.apcata.2011.03.05310.1016/j.apcata.2011.03.053Search in Google Scholar

[4] Brindley, G.W., & Kikkawa, S. (1979). A crystal-chemical study of Mg,Al and Ni,Al hydroxyl-perchlorates and hydroxylcarbonates. American Mineralogist, 64, 836–843. Search in Google Scholar

[5] Cantú, M., López-Salinas, E., Valente, J. S., & Montiel, R. (2005). SOx removal by calcined MgAlFe hydrotalcite-like materials: Effect of the chemical composition and the cerium incorporation method. Environmental Science and Technology, 39, 9715–9720. DOI: 10.1021/es051305m. http://dx.doi.org/10.1021/es051305m10.1021/es051305mSearch in Google Scholar

[6] Carja, G., Nakamura, R., Aida, T., & Niiyama, H. (2001). Textural properties of layered double hydroxides: effect of magnesium substitution by copper or iron. Microporous and Mesoporous Materials, 47, 275–284. DOI: 10.1016/s1387-1811(01)00387-0. http://dx.doi.org/10.1016/S1387-1811(01)00387-010.1016/S1387-1811(01)00387-0Search in Google Scholar

[7] Cavani, F., Trifirò, F., & Vaccari, A. (1991). Hydrotalcitetype anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173–301. DOI: 10.1016/0920-5861(91)80068-k. http://dx.doi.org/10.1016/0920-5861(91)80068-K10.1016/0920-5861(91)80068-KSearch in Google Scholar

[8] Chmielarz, L., Kuśtrowski, P., Rafalska-Łasocha, A., & Dziembaj, R. (2002). Influence of Cu, Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems. Thermochimica Acta, 395, 225–236. DOI: 10.1016/s0040-6031(02)00214-9. http://dx.doi.org/10.1016/S0040-6031(02)00214-910.1016/S0040-6031(02)00214-9Search in Google Scholar

[9] Costantino, U., Coletti, N., Nocchetti, M., Aloisi, G. G., & Elisei, F. (1999). Anion exchange of methyl orange into Zn-Al synthetic hydrotalcite and photophysical characterization of the intercalates obtained. Langmuir, 15, 4454–4460. DOI: 10.1021/la981672u. http://dx.doi.org/10.1021/la981672u10.1021/la981672uSearch in Google Scholar

[10] Di Serio, M., Ledda, M., Cozzolino M., Minutillo, G., Tesser, R., & Santacesaria, E. (2006). Transesterification of soybean oil to biodiesel by using heterogeneous basic catalysts. Industrial & Engineering Chemistry Research, 45, 3009–3014. DOI: 10.1021/ie051402o. http://dx.doi.org/10.1021/ie051402o10.1021/ie051402oSearch in Google Scholar

[11] Dudek, B., Kuśtrowski, P., Białas, A., Natkański, P., Piwowarska, Z., Chmielarz, L., Kozak, M., & Michalik, M. (2012). Influence of textural and structural properties of Mg-Al and Mg-Zn-Al containing hydrotalcite derived oxides on Cr(VI) adsorption capacity. Materials Chemistry and Physics, 132, 929–936 DOI: 10.1016/j.matchemphys.2011.12.037. http://dx.doi.org/10.1016/j.matchemphys.2011.12.03710.1016/j.matchemphys.2011.12.037Search in Google Scholar

[12] Gastuche, M. C., Brown, G., & Mortland, M. M. (1967). Mixed magnesium-aluminium hydroxides: I. Preparation and characterization of compounds formed in dialysed systems. Clay Minerals, 7, 177–192. http://dx.doi.org/10.1180/claymin.1967.007.2.0510.1180/claymin.1967.007.2.05Search in Google Scholar

[13] Hattori, H. (1995). Heterogeneous basic catalysis. Chemical Reviews, 95, 537–558. DOI: 10.1021/cr00035a005. http://dx.doi.org/10.1021/cr00035a00510.1021/cr00035a005Search in Google Scholar

[14] Kasprzyk-Hordern, B. (2004). Chemistry of alumina, reactions in aqueous solution and its application in water treatment. Advances in Colloid and Interface Science, 110, 19–48. DOI: 10.1016/j.cis.2004.02.002. http://dx.doi.org/10.1016/j.cis.2004.02.00210.1016/j.cis.2004.02.002Search in Google Scholar PubMed

[15] Kloprogge, J. T., Hickey, L., & Frost, R. L. (2004). The effects of synthesis pH and hydrothermal treatment on the formation of zinc aluminum hydrotalcites. Journal of Solid State Chemistry, 177, 4047–4057. DOI: 10.1016/j.jssc.2004.07.010. http://dx.doi.org/10.1016/j.jssc.2004.07.01010.1016/j.jssc.2004.07.010Search in Google Scholar

[16] Knothe, G. (2000). Monitoring a progressing transesterification reaction by fiber-optic near infrared spectroscopy with correlation to 1H nuclear magnetic resonance spectroscopy. Journal of the American Oil Chemists’ Society, 77, 489–493. DOI: 10.1007/s11746-000-0078-5. http://dx.doi.org/10.1007/s11746-000-0078-510.1007/s11746-000-0078-5Search in Google Scholar

[17] Kooli, F., Kosuge, K., & Tsunashima, A. (1995). Mg-Zn-Al-CO3 and Mg-Cu-Al-CO3 hydrotalcite-like compounds: Preparation and characterization. Journal of Materials Science, 30, 4591–4597. DOI: 10.1007/bf01153066. http://dx.doi.org/10.1007/BF0115306610.1007/BF01153066Search in Google Scholar

[18] Kunde L. B., Gade S. M., Kalyani V. S., & Gupte, S. P. (2009). Catalytic synthesis of chalcone and flavanone using Zn-Al hydrotalcite adhere ionic liquid. Catalysis Communications, 10, 1881–1888. DOI: 10.1016/j.catcom.2009.06.018. http://dx.doi.org/10.1016/j.catcom.2009.06.01810.1016/j.catcom.2009.06.018Search in Google Scholar

[19] Ludvíková, J., Jirátová, K., & Kovanda, F. (2012). Mixed oxides of transition metals as catalysts for total ethanol oxidation. Chemical Papers, 66, 589–597. DOI: 10.2478/s11696-011-0127-x. http://dx.doi.org/10.2478/s11696-011-0127-x10.2478/s11696-011-0127-xSearch in Google Scholar

[20] Miyata, S. (1975). The syntheses of hydrotalcite-like compounds and their structures and physico-chemical properties I: The systems Mg2+-Al3+-NO 3−, Mg2+-Al3+-Cl−, Mg2+-Al3+-ClO 4−, Ni2+-Al3+-Cl− and Zn2+-Al3+-Cl−. Clays and Clay Minerals, 23, 369–375. DOI: 10.1346/ccmn.1975.0230508. http://dx.doi.org/10.1346/CCMN.1975.023050810.1346/CCMN.1975.0230508Search in Google Scholar

[21] Miyata, S. (1980) Physico-chemical properties of synthetic hydrotalcites in relation to composition. Clays and Clay Minerals, 28, 50–56. DOI: 10.1346/ccmn.1980.0280107. http://dx.doi.org/10.1346/CCMN.1980.028010710.1346/CCMN.1980.0280107Search in Google Scholar

[22] Miyata, S. (1983). Anion-exchange properties of hydrotalcitelike compounds. Clays and Clay Minerals, 31, 305–311. DOI: 10.1346/ccmn.1983.0310409. http://dx.doi.org/10.1346/CCMN.1983.031040910.1346/CCMN.1983.0310409Search in Google Scholar

[23] Padmasri, A. H., Venugopal, A., Kumari, V. D., Rao, K. S. R., & Rao, P. K. (2002). Calcined Mg-Al, Mg-Cr and Zn-Al hydrotalcite catalysts for tert-butylation of phenol with iso-butanol-a comparative study. Journal of Molecular Catalysis A: Chemical, 188, 255–265. DOI: 10.1016/s1381-1169(02)00356-4. http://dx.doi.org/10.1016/S1381-1169(02)00356-410.1016/S1381-1169(02)00356-4Search in Google Scholar

[24] Radha, A. V., Kamath, P. V., & Shivakumara, C. (2007). Conservation of order, disorder, and “crystallinity” during anionexchange reactions among layered double hydroxides (LDHs) of Zn with Al. The Journal of Physical Chemistry B, 111, 3411–3418. DOI: 10.1021/jp0684170. http://dx.doi.org/10.1021/jp068417010.1021/jp0684170Search in Google Scholar

[25] Reichle, W. T., Kang, S. Y., & Everhardt, D. S. (1986). The nature of the thermal decomposition of a catalytically active anionic clay mineral. Journal of Catalysis, 101, 352–359. DOI: 10.1016/0021-9517(86)90262-9. http://dx.doi.org/10.1016/0021-9517(86)90262-910.1016/0021-9517(86)90262-9Search in Google Scholar

[26] Sanchez-Cantu, M., Perez-Diaz, L. M., Maubert, A. M., & Valente, J. S. (2010). Dependence of chemical composition of calcined hydrotalcite-like compounds for SOx reduction. Catalysis Today, 150, 332–339. DOI: 10.1016/j.cattod.2009.09.010. http://dx.doi.org/10.1016/j.cattod.2009.09.01010.1016/j.cattod.2009.09.010Search in Google Scholar

[27] Sánchez-Cantú, M., Pérez-Díaz, L. M., Tepale-Ochoa, N., González-Coronel, V. J., Ramos-Cassellis, M. E., Machorro-Aguirre, D., & Valente, J. S. (2013). Green synthesis of hydrocalumite-type compounds and their evaluation in the transesterification of castor bean oil and methanol. Fuel, 110, 23–31. DOI: 10.1016/j.fuel.2012.06.078. http://dx.doi.org/10.1016/j.fuel.2012.06.07810.1016/j.fuel.2012.06.078Search in Google Scholar

[28] Sels, B. F., De Vos, D. E., & Jacobs, P. A. (2001). Hydrotalcitelike anionic clays in catalytic organic reactions. Catalysis Reviews, 43, 443–488. DOI: 10.1081/cr-120001809. http://dx.doi.org/10.1081/CR-12000180910.1081/CR-120001809Search in Google Scholar

[29] Stamires, D., & O’Connor, P. (2003). U.S. Patent No. 6,589,902. Washington, DC: U.S. Patent and Trademark Office. Search in Google Scholar

[30] Tzompantzi, F., Valente, J. S., Cantú, M. S., & Gómez, R. (2007). Gas-phase acetone condensation over hydrotalcitelike catalysts. In S. R. Schmidt (Ed.), Catalysis of organic reactions (pp. 55–59). Boca Raton, FL, USA: CRC Press. Search in Google Scholar

[31] Valente, J. S., Figueras, F., Gravelle, M., Kumbhar, P., Lopez, J., & Besse, J. P. (2000). Basic properties of the mixed oxides obtained by thermal decomposition of hydrotalcites containing different metallic compositions. Journal of Catalysis, 189, 370–381. DOI: 10.1006/jcat.1999.2706. http://dx.doi.org/10.1006/jcat.1999.270610.1006/jcat.1999.2706Search in Google Scholar

[32] Valente, J. S., Cantú, M. S., Cortez, J. G. H., Montiel, R., Bokhimi, X., & López-Salinas, E. (2007). Preparation and characterization of sol-gel MgAl hydrotalcites with nanocapsular morphology. The Journal of Physical Chemistry C, 111, 642–651. DOI: 10.1021/jp065283h. http://dx.doi.org/10.1021/jp065283h10.1021/jp065283hSearch in Google Scholar

[33] Valente, J. S., Cantu, M. S., & Figueras, F. (2008). A simple environmentally friendly method to prepare versatile hydrotalcite-like compounds. Chemistry of Materials, 20, 1230–1232. DOI: 10.1021/cm7031306. http://dx.doi.org/10.1021/cm703130610.1021/cm7031306Search in Google Scholar

[34] Valente, J. S., Sánchez-Cantú, M., Lima, E., & Figueras, F. (2009a). Method for large-scale production of multimetallic layered double hydroxides: Formation mechanism discernment. Chemistry of Materials, 21, 5809–5818. DOI: 10.1021/cm902377p. http://dx.doi.org/10.1021/cm902377p10.1021/cm902377pSearch in Google Scholar

[35] Valente, J. S., Tzompantzi, F., Prince, J., Cortez, J. G. H., & Gomez, R. (2009b). Adsorption and photocatalytic degradation of phenol and 2,4 dichlorophenoxiacetic acid by Mg-Zn-Al layered double hydroxides. Applied Catalysis B: Environmental, 90, 330–338. DOI: 10.1016/j.apcatb.2009.03.019. http://dx.doi.org/10.1016/j.apcatb.2009.03.01910.1016/j.apcatb.2009.03.019Search in Google Scholar

[36] Valente, J. S., Prince, J., Maubert, A. M., Lartundo-Rojas, L., del Angel, P., Ferrat, G., Hernandez, J. G., & Lopez-Salinas, E. (2009c). Physicochemical study of nanocapsular layered double hydroxides evolution. The Journal of Physical Chemistry C, 113, 5547–5555. DOI: 10.1021/jp810293y. http://dx.doi.org/10.1021/jp810293y10.1021/jp810293ySearch in Google Scholar

[37] Valente, J. S., Hernandez-Cortez, J., Cantu, M. S., Ferrat, G., & López-Salinas, E. (2010). Calcined layered double hydroxides Mg-Me-Al (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts. Catalysis Today, 150, 340–345. DOI: 10.1016/j.cattod.2009.08.020. http://dx.doi.org/10.1016/j.cattod.2009.08.02010.1016/j.cattod.2009.08.020Search in Google Scholar

[38] Wan, D. J., Liu, H. J., Liu, R. P., Qu, J. H., Li, S. S., & Zhang, J. (2012). Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg-Al) hydrotalcite of different Mg/Al ratio. Chemical Engineering Journal, 195–196, 241–247. DOI: 10.1016/j.cej.2012.04.088. http://dx.doi.org/10.1016/j.cej.2012.04.08810.1016/j.cej.2012.04.088Search in Google Scholar

[39] Xie, W. L., Peng, H., & Chen, L. G. (2006). Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical, 246, 24–32. DOI: 10.1016/j.molcata.2005.10.008. http://dx.doi.org/10.1016/j.molcata.2005.10.00810.1016/j.molcata.2005.10.008Search in Google Scholar

[40] Xu, Z. P., & Zeng, H. C. (2001). Abrupt structural transformation in hydrotalcite-like compounds Mg1−x Alx(OH)2(NO3)x · nH2O as a continuous function of nitrate anions. The Journal of Physical Chemistry B, 105, 1743–1749. DOI: 10.1021/jp0029257. http://dx.doi.org/10.1021/jp002925710.1021/jp0029257Search in Google Scholar

[41] Yun, S. K., & Pinnavaia, T. J. (1995). Water content and particle texture of synthetic hydrotalcite-like layered double hydroxides. Chemistry of Materials, 7, 348–354. DOI: 10.1021/cm00050a017. http://dx.doi.org/10.1021/cm00050a01710.1021/cm00050a017Search in Google Scholar

[42] Zümreoglu-Karan, B., & Ay, A. N. (2012). Layered double hydroxides-multifunctional nanomaterials. Chemical Papers, 66, 1–10. DOI: 10.2478/s11696-011-0100-8. http://dx.doi.org/10.2478/s11696-011-0100-810.2478/s11696-011-0100-8Search in Google Scholar

Published Online: 2014-1-28
Published in Print: 2014-5-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 15.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-013-0491-9/html
Scroll to top button