Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 12, 2014

Nano-titanium oxide doped with gold, silver, and palladium — synthesis and structural characterization

  • Wanda Ziemkowska EMAIL logo , Dariusz Basiak , Patrycja Kurtycz , Agnieszka Jastrzębska , Andrzej Olszyna and Antoni Kunicki
From the journal Chemical Papers

Abstract

Nano-titania doped with noble metals (Au/TiO2, Ag/TiO2, Pd/TiO2) has been synthesized by mild hydrolysis of the mixture of metal salts or complexes and titanium isopropoxide ((iPr-O)4Ti). After thermal decomposition of the obtained precursors, nanomaterials were formed. Morphological characterization of the nanomaterials was provided by scanning electron microscopy (SEM) and stereological analysis, determining the BET specific surface area, and BJH nanoporosity (pore volume, pore size). It has been found that the structure of nanomaterials (size of nanoparticles and agglomerates) depended strongly on the method of the (iPr-O)4Ti hydrolysis. A minor dependence on the kind of solvents and precursors of noble metals was observed. The presence of doping metal nanoparticles was confirmed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Nanomaterial phases were identified by X-ray diffraction (XRD). According to the XRD patterns, Ag/TiO2 and Pd/TiO2 products with doping metals in their oxidized form contain Ag-Ti and Pd-Ti phases. Peaks of the metal oxides Ag2O and PdO are absent in the XRD patterns. The average size of TiO2 nanoparticles is situated in the region of 20–60 nm, whereas metals are present as about 10–15 nm sized particles and fine nanoparticles.

[1] Andrieux, J., Dezellus, O., Bosselet, F., Sacerdote-Peronnet, M., Sigala, C., Chiriac, R., & Viala J. C. (2008). Details on the formation of Ti2Cu3 in the Ag-Cu-Ti system in the temperature range 790 to 860 °C. Journal of Phase Equilibria and Diffusion, 29, 156–162. DOI: 10.1007/s11669-008-9247-6. http://dx.doi.org/10.1007/s11669-008-9247-610.1007/s11669-008-9247-6Search in Google Scholar

[2] Chao, H. E., Yun, Y. U., Xingfang, H. U., & Larbot, A. (2003). Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. Journal of the European Ceramic Society, 23, 1457–1464. DOI: 10.1016/s0955-2219(02)00356-4. http://dx.doi.org/10.1016/S0955-2219(02)00356-410.1016/S0955-2219(02)00356-4Search in Google Scholar

[3] Chen, H. D., Weiss, J. C., & Shahidi, F. (2006). Nanotechnology in nutraceuticals and functional foods. Food Technology, 60(3), 30–37. Search in Google Scholar

[4] Choi, W. Y., Termin, A., & Hoffmann, M. R. (1994). The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. The Journal of Physical Chemistry, 98, 13669–13679. DOI: 10.1021/j100102a038. http://dx.doi.org/10.1021/j100102a03810.1021/j100102a038Search in Google Scholar

[5] Ellner, M. (2004). Partial atomic volume and partial molar enthalpy of formation of the 3d metals in the palladium-based solid solutions. Metallurgical and Materials Transactions A, 35, 63–70. DOI: 10.1007/s11661-004-0109-5. http://dx.doi.org/10.1007/s11661-004-0109-510.1007/s11661-004-0109-5Search in Google Scholar

[6] European Directorate for the Quality of Medicines & Health-Care (2005). European pharmacopoeia (5th ed., Vol. 2, pp. 2587–2588). Strasbourg, France. Search in Google Scholar

[7] Evans, J., Harris, I. R., & Guzei, L. S. (1979). An investigation of some palladium-titanium and some palladium-titaniumhydrogen alloys. Journal of the Less-Common Metals, 64, P39–P57. DOI: 10.1016/0022-5088(79)90186-3. http://dx.doi.org/10.1016/0022-5088(79)90186-310.1016/0022-5088(79)90186-3Search in Google Scholar

[8] Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research: Part A, 52, 662–668. DOI: 10.1002/1097-4636(20001215)52:4〈662::AIDJBM10〉3.0.CO;2-3. http://dx.doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-310.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3Search in Google Scholar

[9] Hu, C., Yu, J. C., Hao, Z. P., & Wong, P. K. (2003). Photocatalytic degradation of triazine-containing azodyes in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 42, 47–55. DOI: 10.1016/s0926-3373(02)00214-x. http://dx.doi.org/10.1016/S0926-3373(02)00214-X10.1016/S0926-3373(02)00214-XSearch in Google Scholar

[10] Horikoshi, S., Watanabe, N., Hidaka, H., & Serpone, N. (2002). Photocurrent enhancement from an active hybrid TiO2 film electrode fabricated by a sol-gel method: photocurrent generation during the photooxidation of 4-nonylphenol and 4-nonylphenol polyethoxylate on TiO2/OTE electrodes. New Journal of Chemistry, 26, 1161–1166. DOI: 10.1039/b202379m. http://dx.doi.org/10.1039/b202379m10.1039/B202379MSearch in Google Scholar

[11] Lok, C. N., Ho, C. M., Chen, R., He, Q. Y., Yu, W. Y., Sun, H. Z., Tam, P. K. H., Chiu, J. F., & Che, C. M. (2006). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 5, 916–924. DOI: 10.1021/pr0504079. http://dx.doi.org/10.1021/pr050407910.1021/pr0504079Search in Google Scholar

[12] Liu, D., & Kamat, P. V. (1993). Electrochemical rectification in CdSe+TiO2 coupled semiconductor films. Journal of Electroanalytical Chemistry, 347, 451–456. DOI: 10.1016/0022-0728(93)80110-4. http://dx.doi.org/10.1016/0022-0728(93)80110-410.1016/0022-0728(93)80110-4Search in Google Scholar

[13] Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdörster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J., & Warheit, D. B. (2006). Safe handling of nanotechnology. Nature, 444, 267–269. DOI: 10.1038/444267a. http://dx.doi.org/10.1038/444267a10.1038/444267aSearch in Google Scholar PubMed

[14] Monteiro-Riviere, N. A., Wiench, K., Landsiedel, R., Schulte, S., Inman, A. O., & Riviere, N. A. (2011). Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: An in vitro and in vivo study. Toxicological Sciences, 123, 264–280. DOI: 10.1093/toxsci/kfr148. http://dx.doi.org/10.1093/toxsci/kfr14810.1093/toxsci/kfr148Search in Google Scholar PubMed

[15] Nam, H. J., Itoh, K., & Murabayashi, M. (2002). Photocatalytic activity of TiO2 thin film — Effect of substrate. Electrochemistry, 70, 429–431. 10.5796/electrochemistry.70.429Search in Google Scholar

[16] Peter, A., Nicula, C., Mihaly-Cozmuta, A., Mihaly-Cozmuta, L., & Indrea, E. (2012). Chemical and sensory changes of different dairy products during storage in packages containing nanocrystallised TiO2. International Journal of Food Science & Technology, 47, 1448–1456. DOI: 10.1111/j.1365-2621.2012.02992.x. 10.1111/j.1365-2621.2012.02992.xSearch in Google Scholar

[17] Pichot, F., Pitts, J. R., & Greg, B. A. (2000). Low temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells. Langmuir, 16, 5626–5630. DOI: 10.1021/la000095i. http://dx.doi.org/10.1021/la000095i10.1021/la000095iSearch in Google Scholar

[18] Schmutzer, G., Feher, I., Marincas, O., Avram, V., Kovacs, M. H., David, L., Danciu, V., & Moldovan, Z. (2012). Photodegradation study of some indoor air pollutants in the presence of UV-VIS irradion and TiO2 photocatalyst. Studia Universitatis Babes-Bolyai Chemia, 57(3), 15–21. Search in Google Scholar

[19] Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182. DOI: 10.1016/j.jcis.2004.02.012. http://dx.doi.org/10.1016/j.jcis.2004.02.01210.1016/j.jcis.2004.02.012Search in Google Scholar PubMed

[20] The Commission of the European Communities (1995). Commission Directive 95/45/EC of 26 July 1995 laying down specific purity criteria concerning colours for use in foodstuffs. Official Journal of European Communities, L226, 1–45. Search in Google Scholar

[21] United States Food and Drug Administration (1986). Titanium dioxide. Code of Federal Regulations (Title 21, Section 73.3126). Search in Google Scholar

[22] Yu, J. C., Ho, W. K., Yu, J. G., Yip, H. Y., Wong, P. K., & Zhao, J. C. (2005). Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environmental Science & Technology, 39, 1175–1179. DOI: 10.1021/es035374h. http://dx.doi.org/10.1021/es035374h10.1021/es035374hSearch in Google Scholar PubMed

[23] Veréb, G., Ambrus, Z., Pap, Zs., Kmetykó, A., Dombi, A., Danciu, V., Cheesman, A., & Mogyorósi, K. (2012). Comparative study on UV and visible light sensitive bare and doped titanium dioxide photocatalyst for decomposition of environmental pollutants in water. Applied Catalysis A: General, 417-418, 26–36. DOI: 10.1016/j.apcata.2011.12.018. http://dx.doi.org/10.1016/j.apcata.2011.12.01810.1016/j.apcata.2011.12.018Search in Google Scholar

Published Online: 2014-3-12
Published in Print: 2014-7-1

© 2014 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-014-0537-7/html
Scroll to top button