Skip to main content
Log in

Biodegradation of cyanide by Rhodococcus UKMP-5M

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

A new bacterial strain, Rhodococcus UKMP-5M isolated from petroleum-contaminated soils demonstrated promising potential to biodegrade cyanide to non-toxic end-products. Ammonia and formate were found as final products during growth of the isolate with KCN as the sole nitrogen source. Formamide was not detected as one of the end-products suggesting that the biodegradation of cyanide by Rhodococcus UKMP-5M may have proceeded via a hydrolytic pathway involving the bacterial enzyme cyanidase. No growth of the bacterium was observed when KCN was supplied as the sole source of carbon and nitrogen even though marginal reduction in the concentration of cyanide was recorded, indicating the toxic effect of cyanide even in cyanide-degrading microorganisms. The cyanide biodegradation ability of Rhodococcus UKMP-5M was greatly affected by the presence of organic nutrients in the medium. Medium containing glucose and yeast extract promoted the highest growth rate of the bacterium which simultaneously assisted complete biodegradation of 0.1 mM KCN within 24 hours of incubation. It was found that growth and cyanide biodegradation occurred optimally at 30°C and pH 6.3 with glucose as the preferred carbon source. Acetonitrile was used as an inducer to enhance cyanide biodegradation since the enzymes nitrile hydratase and/or nitrilase have similarity at both the amino acid and structural levels to that of cyanidase. The findings from this study should be of great interest from an environmental and health point of views since the optimum conditions discovered in the present study bear a close resemblance to the actual scenario of cyanide wastewater treatment facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams D.J., Van Komen J. & Pickett T.M. 2001. Biological cyanide degradation, pp. 203–213. In: Young C. (ed.), Cyanide: Social, Industrial and Economic Aspects. The Metals Society, Warrendale.

    Google Scholar 

  • Adjei M.D. & Ohta Y. 1999. Isolation and characterization of a cyanide-utilizing Burkholderia cepacia strain. World J. Microbiol. Biotechnol. 15: 699–704.

    Article  CAS  Google Scholar 

  • Adjei M.D. & Ohta Y. 2000. Factors affecting the biodegradation of cyanide by Burkholderia cepacia strain C-3. J. Biosci. Bioeng. 89: 274–277.

    Article  PubMed  CAS  Google Scholar 

  • Akcil A. 2003. Destruction of cyanide in gold mill effluents: biological versus chemical treatments. Biotechnol. Adv. 21: 501–510.

    Article  PubMed  CAS  Google Scholar 

  • Akcil A., Karahan A.G., Ciftci H. & Sagdic O. 2003. Biological treatment of cyanide by natural isolated bacteria (Pseudomonas species). Miner. Eng. 16: 643–649.

    Article  CAS  Google Scholar 

  • Akcil A. & Mudder T. 2003. Microbial destruction of cyanide wastes in gold mining: process review. Biotechnol. Lett. 25: 445–450.

    Article  PubMed  CAS  Google Scholar 

  • Barclay M., Tett V.A. & Knowles C.J. 1998. Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions. Enzyme Microb. Technol. 23: 321–330.

    Article  CAS  Google Scholar 

  • Baxter J. & Cummings S.P. 2006. The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie van Leeuwenhoek 19: 1–17.

    Article  Google Scholar 

  • Botz M., Mudder T. & Akcil A. 2005. Cyanide treatment: physical, chemical and biological processes, pp. 672–700. In: Adams M. (ed.) Advances in Gold Ore Processing, Chapter 15. Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Cabuk A., Unal A.T. & Kolankaya N. 2006. Biodegradation of cyanide by a white rot fungus, Trametes versicolor. Biotechnol. Lett. 28: 1313–1317.

    Article  PubMed  CAS  Google Scholar 

  • Dash R.R., Gaur A. & Balomajumder C. 2009. Cyanide in industrial wastewaters and its removal: a review on biotreatment. J. Hazard. Mater. 163: 1–11.

    Article  PubMed  Google Scholar 

  • Dorr P.K. & Knowles C.J. 1989. Cyanide oxygenase and cyanase activities of Pseudomonas fluorescens NCIMB 11764. FEMS Microbiol. Lett. 60: 289–294.

    Article  CAS  Google Scholar 

  • Dumestre A., Chone T., Portal J.M., Gerard M. & Berthelin J. 1997. Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils. Appl. Environ. Microbiol. 63: 2729–2734.

    PubMed  CAS  Google Scholar 

  • Ezzi M.I. & Lynch J.M. 2005. Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. Enzyme Microb. Technol. 36: 849–854.

    Article  CAS  Google Scholar 

  • Fawcett J.K & Scott J.E. 1960. A rapid and precise method for the determination of the urea. J. Clin. Pathol. 13: 156–159.

    Article  PubMed  CAS  Google Scholar 

  • Goncalves M.M.M., Pinto A.F. & Granato M. 1998. Biodegradation of free cyanide, thiocyanate and metal complexed cyanides in solutions with different compositions. Environ. Technol. 19: 133–142.

    Article  CAS  Google Scholar 

  • Goswami M., Shivaraman N. & Singh R.P. 2002. Kinetics of chlorophenol degradation by benzoate-induced culture of Rhodococcus erythropolis M1. World J. Microbiol. Biotechnol. 18: 779–783.

    Article  CAS  Google Scholar 

  • Gupta N., Balomajumder C. & Agarwal V.K. 2010. Enzymatic mechanism and biochemistry for cyanide degradation: a review. J. Hazard. Mater. 176: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Harris R. & Knowles C.J. 1983. Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen. J. Gen. Microbiol. 129: 1005–1011.

    PubMed  CAS  Google Scholar 

  • Hong Y.L. 2007. Dissipation of cyanide contaminants in the rhizosphere environment. Ph.D Thesis. Purdue University.

    Google Scholar 

  • Hossain S.M., Das M., Begum K.M.M.S. & Anantharaman N. 2005. Studies on biodegradation of cyanide (AgCN) using Phanerochaete chrysosporium. J. Institution Engineers 85: 45–49.

    CAS  Google Scholar 

  • Ingvorsen K., Hojer-Pedersen B. & Godtfredsen S.E. 1991. Novel cyanide-hydrolyzing enzyme from Alcaligenes xylosoxidans subsp. denitrificans. Appl. Environ. Mirobiol. 57: 1783–1789.

    CAS  Google Scholar 

  • Kao C.M., Liu J.K., Lou H.R., Lin C.S. & Chen S.C. 2003. Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca. Chemosphere 50: 1055–1061.

    Article  PubMed  CAS  Google Scholar 

  • Keusgen M., Milka P. & Krest I. 2001. Cyanidase from bacterial sources and its potential for the construction of biosensors. Proceedings of the Biosensor Symposium. Tubingen, Germany.

    Google Scholar 

  • Kunz D.A., Nagappan O., Silva-Avalos J. & Delong G.T. 1992. Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion. Appl. Environ. Microbiol. 58: 2022–2029.

    PubMed  CAS  Google Scholar 

  • Kwon H.K., Woo S.H. & Park J.M. 2002. Degradation of tetracyaninickelate (II) by Cryptococcus humicolus MCN2. FEMS Microbiol. Lett. 214: 211–216.

    Article  PubMed  CAS  Google Scholar 

  • Lee C.K. & Low K.S. 1980. A study of wastewater discharge from electroplating factories. Pertanika 3: 159–161.

    CAS  Google Scholar 

  • Mak K.K.W., Law A.W.C., Tokuda S., Yanase H. & Renneberg R. 2005. Application of cyanide hydrolase from Klebsiella sp. in a biosensor system for the detection of low-level cyanide. Appl. Microbiol. Biotechnol. 67: 631–636.

    Article  PubMed  CAS  Google Scholar 

  • Mudder T.I. & Botz M.M. 2004. Cyanide and society: a critical review. Eur. J. Miner. Process. Environ. Prot. 4: 62–74.

    Google Scholar 

  • Mudder T.I., Botz M.M. & Smith A. 2001. Chemistry and Treatment of Cyanidation Wastes, 2nd Edition. Mining Journal Books, London.

    Google Scholar 

  • Nagashima S. 1977. Spectrophotometric determination of cyanide with γ-picoline and barbituric acid. Anal. Chim. Acta. 91: 303–306.

    Article  CAS  Google Scholar 

  • Nallapan Maniyam M., Sjahrir F. & Ibrahim A.L. 2011. Bioremediation of cyanide by optimized resting cells of Rhodococcus strains isolated from Peninsular Malaysia. Int. J. Biosci. Biochem. Bioinform. 1: 98–101.

    Google Scholar 

  • Nallapan Maniyam M., Sjahrir F. & Ibrahim A.L. 2012. Cyanide degradation by immobilized cells of Rhodococcus UKMP-5M. Biologia 67: 837–844.

    Article  CAS  Google Scholar 

  • Nolan L.M., Harnedy P.A., Turner P., Hearne A.B. & O’Reilly C. 2003. The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity. FEMS Microbiol. Lett. 221: 161–165.

    Article  PubMed  CAS  Google Scholar 

  • Patil Y.B. & Paknikar K.M. 2000. Biodetoxification of sivercyanide from electroplating industry wastewater. Lett. Appl. Microbiol. 30: 33–37.

    Article  PubMed  CAS  Google Scholar 

  • Sharma S.L. & Pant A. 2001. Crude oil degradation by a marine actinomycete Rhodococcus sp. Ind. J. Marine Sci. 30: 146–150.

    CAS  Google Scholar 

  • Shukor M.Y., Gusmanizar N., Ramli J., Shamaan N.A., Mac-Cornmack W.P. & Syed M.A. 2009. Isolation and characterization of an acrylamide-degrading Antarctic bacterium. J. Environ. Biol. 30: 107–112.

    PubMed  CAS  Google Scholar 

  • Watanabe A., Yano K., Ikebukuro K. & Karube I. 1998. Cyanide hydrolysis in a cyanide-degrading bacterium, Pseudomonas stutzeri AK61, by cyanidase. Microbiology 144: 1677–1682.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maegala Nallapan Maniyam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nallapan Maniyam, M., Sjahrir, F., Ibrahim, A.L. et al. Biodegradation of cyanide by Rhodococcus UKMP-5M. Biologia 68, 177–185 (2013). https://doi.org/10.2478/s11756-013-0158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0158-6

Keywords

Navigation