Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 1, 2006

High-performance IR detectors at SCD present and future

  • O. Nesher EMAIL logo and P. Klipstein
From the journal Opto-Electronics Review

Abstract

For over 27 years, SCD has been manufacturing and developing a wide range of high performance infrared detectors, designed to operate in either the mid-wave (MWIR) or the long-wave (LWIR) atmospheric windows. These detectors have been integrated successfully into many different types of system including missile seekers, time delay integration scanning systems, hand-held cameras, missile warning systems and many others. SCD’s technology for the MWIR wavelength range is based on its well established 2D arrays of InSb photodiodes. The arrays are flip-chip bonded to SCD’s analogue or digital signal processors, all of which have been designed in-house. The 2D focal plane array (FPA) detectors have a format of 320×256 elements for a 30-μm pitch and 480×384 or 640×512 elements for a 20-μm pitch. Typical operating temperatures are around 77–85 K. Five years ago SCD began to develop a new generation of MWIR detectors based on the epitaxial growth of antimonide based compound semiconductors (ABCS). This ABCS technology allows band-gap engineering of the detection material which enables higher operating temperatures and multi-spectral detection. This year SCD presented its first prototype FPA from this program, an InAlSb based detector operating at a temperature of 100 K. By the end of this year SCD will introduce the first prototype MWIR detector with a 640×512 element format and a pitch of 15 μm. For the LWIR wavelength range SCD manufactures both linear Hg1−xCdxTe (MCT) detectors with a line of 250 elements and time delay and integration (TDI) detectors with formats of 288×4 and 480×6. Recently, SCD has demonstrated its first prototype uncooled detector which is based on VOx technology and which has a format of 384×288 elements, a pitch of 25 μm, and a typical NETD of 50 mK at F/1. In this paper, we describe the present technologies and products of SCD and the future evolution of our detectors for the MWIR and LWIR detection.

[1] O. Nesher, P.C. Klipstein, and E. Weiss, “Advanced IR detector design at SCD: from D3C™ to ABCS”, Proc. SPIE 5359, 101–110 (2004). Search in Google Scholar

[2] T. Markovitz, F. Schapiro, D. Alfiya, S. Hasson, A. Magner and O. Nesher, “Piccolo — a high performance IR detector optimized for handheld applications”, Proc. SPIE 5406, 239–248 (2004). Search in Google Scholar

[3] M. Zucker, I. Pivnik, E. Malkinson, J. Haski, T. Reiner, D. Admon, M. Keinan, M. Yassen, I. Sapiro, L. Bykov, N. Sapir, and A. Fraenkel, “Long, mid-wave infrared detector with time delayed integration”, Proc. SPIE 4820, 580–592 (2002). Search in Google Scholar

[4] S. Elkind, A. Adin, I. Nevo, and A.B. Marhasev, “Focal plane processor with a digital video output for InSb detectors”, Proc. SPIE 4820, 751–757 (2002). Search in Google Scholar

[5] O. Nesher, S. Elkind, A. Adin, I. Nevo, A.B. Yaakov, S. Raichshtain, A.B. Marhasev, A. Magner, M. Katz, T. Markovitz, D. Chen, M. Kenan A. Ganany, J.O. Schlesinger, and Z. Calahorra, “A digital cooled InSb detector for IR detection”, Proc. SPIE 5074, 120–129 (2003). Search in Google Scholar

[6] O. Nesher, S. Elkind, I. Nevo, T. Markovitz, A. Ganany, A.B. Marhashev, and M. Ben-Ezra, “480×384 element InSb detector with digital processor”, Proc. SPIE 5406, 214–221 (2004). Search in Google Scholar

[7] P. Klipstein, E. Jacobson, O. Klin, M. Yassen, Z. Calahora, E. Weiss, S. Risemberg, and D. Rosenfeld, “Antimonide based materials for infrared detection” Proc. SPIE 4820, 653–662 (2002). Search in Google Scholar

[8] P. Klipstien, Z. Calahora, A. Zemel, R. Gat, E. Harush, E. Jacobson, O. Klin, M. Yassen, J. Oiknine-Schlesinger, E. Weiss, and S. Risemberg, “Third-generation infrared detector program at SCD”, Proc. SPIE 5406, 222–229 (2004). Search in Google Scholar

[9] P. Klipstien, Z. Calahora, A. Zemel, R. Gat, E. Harush, E. Jacobson, O. Klin, M. Yassen, J. Oiknine-Schlesinger, E. Weiss, and S. Risemberg, “3rd generation infrared detectors at SCD: InAlSb focal plane arrays”, Proc. SPIE 5406, 222–229 (2004). Search in Google Scholar

[10] O. Nesher, S. Elkind, A. Adin, U. Palty, O. Pelleg, E. Jacobsohn, T. Markovitz, I. Szafranek, Z. Calahorra, and J. Oiknine-Schlesinger, “Performance of BF focal plane array 320×256 InSb detectors”, Proc. SPIE 4820, 699–707 (2002). Search in Google Scholar

[11] U. Mizrahi, A. Fraenkel, L. Bykov, A. Giladi, A. Adin, E. Ilan, N. Shiloah, E. Malkinson, Y. Zabar, D. Seter, R. Nakash, and Z. Kopolovich, “Uncooled detector development program at SCD”, Proc. SPIE 5783, 551–558 (2005). Search in Google Scholar

[12] O. Nesher, S. Elkind, and T. Markovitz, “Advantages of SCD detectors for missile warning system”, Proc. SPIE 5612, 32–41 (2004). Search in Google Scholar

[13] A. Fuchs, L. Bürkle, R. Hamid, N. Herres, W. Pletschen, R.E. Sah, R. Kiefer, and J. Schmitz, “Optoelectronic properties of photodiodes for the mid-and far-infrared based on the InAs/GaSb/AlSb materials family”, Proc. SPIE 4288, 171–182 (2001). Search in Google Scholar

[14] P. Klipstien, Z. Calahora, A. Zemel, R. Gat, E. Harush, E. Jacobson, O. Klin, M. Yassen, J. Oiknine-Schlesinger, and E. Weiss, “Third-generation infrared detector program at SCD: InAlSb focal plane arrays”, Proc. SPIE 5612, 42–50 (2004). Search in Google Scholar

[15] L. Shkedy, O. Amir, Z. Calahorra, J. Oiknine-Schlesinger, and I. Szafranek, “Temperature dependence of spatial noise in InSb focal plane arrays”, Proc. SPIE 4028, 481–488 (2000). Search in Google Scholar

Published Online: 2006-3-1
Published in Print: 2006-3-1

© 2006 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 18.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-006-0009-x/html
Scroll to top button