Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 18, 2010

Photoluminescence and photoconductive characteristics of hydrothermally synthesized ZnO nanoparticles

  • S.K. Mishra EMAIL logo , R.K. Srivastava , S.G. Prakash , R.S. Yadav and A.C. Panday
From the journal Opto-Electronics Review

Abstract

In the present paper, ZnO nanoparticles (NPs) with particle size of 20–50 nm have been synthesized by hydrothermal method. UV-visible absorption spectra of ZnO nanoparticles show absorption edge at 372 nm, which is blue-shifted as compared to bulk ZnO. Photoluminescence (PL) and photoconductive device characteristics, including field response, light intensity response, rise and decay time response, and spectral response have been studied systematically. The photoluminescence spectra of these ZnO nanoparticles exhibited different emission peaks at 396 nm, 416 nm, 445 nm, 481 nm, and 524 nm. The photoconductivity spectra of ZnO nanoparticles are studied in the UV-visible spectral region (366–691 nm). In spectral response curve of ZnO NPs, the wavelength dependence of the photocurrent is very close to the absorption and photoluminescence spectra. The photo generated current, Ipc = (Itotal - Idark) and dark current Idc varies according to the power law with the applied field IpcαVr and with the intensity of illumination IpcαIL r, due to the defect related mechanism including both recombination centers and traps. The ZnO NPs is found to have deep trap of 0.96 eV, very close to green band emission. The photo and dark conductivities of ZnO NPs have been measured using thick film of powder without any binder.

[1] Y. Wang and N. Herron, “Quantum size effects on the exciton energy of CdS clusters”, Phys. Rev. B42, 7253–7255 (1990). 10.1103/PhysRevB.42.7253Search in Google Scholar

[2] J. Nanda, B.A. Kuruvilla, and D.D. Sarma, “Photoelectron spectroscopic study of CdS nanocrystallites”, Phys. Rev. B59, 7473–7479 (1999). 10.1103/PhysRevB.59.7473Search in Google Scholar

[3] L.E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites-the size dependence of the lowest excited electronic state”, J. Chem. Phys. 80, 4403–4409 (1984). http://dx.doi.org/10.1063/1.44721810.1063/1.447218Search in Google Scholar

[4] S. Sapra and D.D. Sarma, “Evolution of the electronic structure with size in II-VI semiconductor nanocrystals”, Phys. Rev. B69, 125304 (2004). 10.1103/PhysRevB.69.125304Search in Google Scholar

[5] R.H. Bube, Photoconductivity of Solid, Wiley, Newyork, 1960. Search in Google Scholar

[6] T.K. Gupta, “Application of zinc oxide varistors”, J. Am. Ceram. Soc. 73, 1817–1839 (1990). http://dx.doi.org/10.1111/j.1151-2916.1990.tb05232.x10.1111/j.1151-2916.1990.tb05232.xSearch in Google Scholar

[7] D.C. Look, “Recent advances in ZnO materials and devices”, Mater. Sci. Eng. B80, 383–387 (2001). http://dx.doi.org/10.1016/S0921-5107(00)00604-810.1016/S0921-5107(00)00604-8Search in Google Scholar

[8] Y. Natsume, H. Sakata, T. Hirayama, and H. Yanagida, “Low-temperature conductivity of ZnO films prepared by chemical vapour deposition”, J. Appl. Phys. 72, 4203–4207 (1992). http://dx.doi.org/10.1063/1.35223110.1063/1.352231Search in Google Scholar

[9] T. Okamura, Y. Seki, S. Nagakary, and H. Okushi, “Preparation of n-ZnO/p-Si heterojunction by sol-gel process”, Jpn. J. Appl. Phys. 31, L762–L764 (1992). http://dx.doi.org/10.1143/JJAP.31.L76210.1143/JJAP.31.L762Search in Google Scholar

[10] J. Aranovich, A. Ortiz, and R.H. Bube, “Optical and electrical properties of ZnO prepared by spray pyrolysis for solar cell applications”, J. Vac. Sci. Technol. 16, 994 (1979). http://dx.doi.org/10.1116/1.57016710.1116/1.570167Search in Google Scholar

[11] R.S. Yadav and A.C. Pandey, “Small angle X-ray scattering and photoluminescence study of ZnO nanoparticles synthesized by hydrothermal process”, J. Exp. Nanosci. 2, 177–182 (2007). http://dx.doi.org/10.1080/1745808070147424210.1080/17458080701474242Search in Google Scholar

[12] R.S. Yadav, A.C. Pandey, and S.S. Sanjay, “ZnO porous structures synthesized by CTAB-assisted hydrothermal process”, Struct. Chem. 18, 1001 (2007). http://dx.doi.org/10.1007/s11224-007-9251-110.1007/s11224-007-9251-1Search in Google Scholar

[13] R.S. Yadav, R. Mishra, and A.C. Pandey, “Particle size distribution study by small-angle X-ray scattering technique and photoluminescence property of ZnO nanoparticles”, J. Exp. Nanosci. 4, 139 (2009). http://dx.doi.org/10.1080/1745808090292993710.1080/17458080902929937Search in Google Scholar

[14] F.H. Nicoll, “Ultraviolet ZnO laser pumped by an electron beam”, Appl. Phys. Lett. 9, 13 (1966). http://dx.doi.org/10.1063/1.175457810.1063/1.1754578Search in Google Scholar

[15] S. Mridha and D. Basak, “Thickness dependent photoconducting properties of ZnO films”, Chem. Phys. Lett. 427, 62–66 (2006). http://dx.doi.org/10.1016/j.cplett.2006.06.02210.1016/j.cplett.2006.06.022Search in Google Scholar

[16] M.J.H. Henseler, W.C.T. Lee, P. Miller, S.M. Durbin, and R.J. Reeves, “Optical and photoelectrical properties of ZnO thin films and the effects of annealing”, J. Cryst. Growth 287, 48–53 (2006). http://dx.doi.org/10.1016/j.jcrysgro.2005.10.04110.1016/j.jcrysgro.2005.10.041Search in Google Scholar

[17] P. Sharma, K. Sreenivas, and K.V. Rao, “Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering”, J. Appl. Phys. 93, 3963–3970 (2003). http://dx.doi.org/10.1063/1.155899410.1063/1.1558994Search in Google Scholar

[18] O. Harnack, C. Pacholski, H. Weller, A. Yasuda, and J.M. Wessels, “Rectifying behavior of electrically aligned ZnO nanorods”, Nanoletters 3, 1097–1101 (2003). Search in Google Scholar

[19] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches”, Adv. Mater. 14, 158–160 (2002). http://dx.doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-WSearch in Google Scholar

[20] J.B. Baxter and C.A. Schmuttenmaer, “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy”, J. Phys. Chem. B110, 25229–25239 (2006). 10.1021/jp064399aSearch in Google Scholar

[21] S. Devi and S.G. Prakash, “Photoconductivity of (ZnO-CdO) mixed lattices”, Natl. Acad. Sci. Lett. (India) 13, 35 (1990). Search in Google Scholar

[22] R.K. Srivastava and S.G. Prakash, “Photoconductivity and dark conductivity of CdS-Se mixed lattice”, Natl. Acad. Sci. Lett. 30, 11–12 (2007). Search in Google Scholar

[23] J. Zhang, L.D. Sun, J.L. Yin, H.L. Su, C.S. Liao, and C.H. Yan, “Control of ZnO morphology via a simple solution route”, Chem. Mater. 14, 4172–4177 (2002). http://dx.doi.org/10.1021/cm020077h10.1021/cm020077hSearch in Google Scholar

[24] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys. 79, 7983 (1996). http://dx.doi.org/10.1063/1.36234910.1063/1.362349Search in Google Scholar

[25] X.M. Fan, J.S. Lian, L. Zhao, and Y. Liu, “Single violet luminescence emitted from ZnO films obtained by oxidation of Zn film on quartz glass”, Appl. Surf. Sci. 252, 420–424 (2005). http://dx.doi.org/10.1016/j.apsusc.2005.01.01810.1016/j.apsusc.2005.01.018Search in Google Scholar

[26] T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, and Y. Horikoshi, “Intrinsic defects in ZnO films grown by molecular beam epitaxy”, Jpn. J. Appl. Phys. 43, 2602–2606 (2004). http://dx.doi.org/10.1143/JJAP.43.260210.1143/JJAP.43.2602Search in Google Scholar

[27] J. Wang and L. Gao, “Synthesis of uniform rod-like, multi-pod-like ZnO whiskers and their photoluminescence properties”, J. Cryst. Growth 262, 290–294 (2004). http://dx.doi.org/10.1016/j.jcrysgro.2003.10.03010.1016/j.jcrysgro.2003.10.030Search in Google Scholar

[28] R. Dingle, “Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc-oxide”, Phys. Rev. Lett. 23, 579–581 (1969). http://dx.doi.org/10.1103/PhysRevLett.23.57910.1103/PhysRevLett.23.579Search in Google Scholar

[29] Y.W. Heo, D.P. Norton, and S.J. Pearton, “Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy”, J. Appl. Phys. 98, 073502 (2005). http://dx.doi.org/10.1063/1.206430810.1063/1.2064308Search in Google Scholar

[30] T.E. Murphy, K. Moazzami, and J.D. Phillips, “Trap-related photoconductivity in ZnO epilayers”, J. Electron. Mater. 35, 543–549 (2006). http://dx.doi.org/10.1007/s11664-006-0097-x10.1007/s11664-006-0097-xSearch in Google Scholar

[31] B. Lin, Z. Fu, and Y. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”, Appl. Phys. Lett. 79, 943–945 (2001). http://dx.doi.org/10.1063/1.139417310.1063/1.1394173Search in Google Scholar

[32] F. Wen, W. Li, J. Moon, and J. Kima, “Hydrothermal synthesis of ZnO:Zn with green emission at low temperature with reduction process”, Solid State Commun. 135, 34–37 (2005). http://dx.doi.org/10.1016/j.ssc.2005.03.06610.1016/j.ssc.2005.03.066Search in Google Scholar

[33] R.W. Smith and A. Rose, “Space-charge-limited currents in single crystals of cadmium sulfide”, Phys. Rev. 97, 1531–1537 (1955). http://dx.doi.org/10.1103/PhysRev.97.153110.1103/PhysRev.97.1531Search in Google Scholar

[34] A. Rose, R.G.A Review 12, 362 (1951). 10.2307/271577Search in Google Scholar

[35] S. Bhushan and D. Diwan, “Photoconductivity of ZnO phosphors”, Natl. Acad. Sci. Lett. 7, 12 (1984). Search in Google Scholar

[36] H. Meier, Organic Semiconductors: Dark and Photoconductivity of Organic Solids, Weinheim, Chemie GmbH, 1974. Search in Google Scholar

[37] P.K.C. Pillai, N. Schroff, N.N. Kumar, and A.K. Tripathi, “Photoconductivity and dark-conductivity studies of CdS1−xSex(Cu) sintered layers”, Phys. Rev. B32, 8228–8233 (1985). 10.1103/PhysRevB.32.8228Search in Google Scholar

[38] R.H. Bube, Photoconductivity of Solids, John Wiley, New York, 404, 1967. Search in Google Scholar

[39] K. Moazzami, T.E. Murphy, S.P. Phillips, M.C.K. Cheung, and A.N. Cartwright, “Sub-bandgap photoconductivity in ZnO epilayers and extraction of trap density spectra”, Semicond. Sci. Tech. 21, 717–723 (2006). http://dx.doi.org/10.1088/0268-1242/21/6/00110.1088/0268-1242/21/6/001Search in Google Scholar

[40] J. Carry, H. Carrere, M.L. Kahn, B. Chaudret, X. Marie, and M. Respaud, “Photoconductivity of self-assembled ZnO nanoparticles synthesized by organometallic chemistry”, Semicond. Sci. Tech. 23, 025003 (2008). http://dx.doi.org/10.1088/0268-1242/23/2/02500310.1088/0268-1242/23/2/025003Search in Google Scholar

Published Online: 2010-9-18
Published in Print: 2010-12-1

© 2010 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-010-0037-4/html
Scroll to top button