Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter September 18, 2010

Dipole and quadrupole surface plasmon resonance contributions in formation of near-field images of a gold nanosphere

  • M. Shopa EMAIL logo , K. Kolwas , A. Derkachova and G. Derkachov
From the journal Opto-Electronics Review

Abstract

Multipolar plasmon optical excitations at spherical gold nanoparticles and their manifestations in the particle images formatted in the particle surface proximity are studied. The multipolar plasmon size characteristic: plasmon resonance frequencies and plasmon damping rates were obtained within rigorous size dependent modelling. The realistic, frequency dependent dielectric function of a metal was used. The distribution of light intensity and of electric field radial component at the flat square scanning plane scattered by a gold sphere of radius 95 nm was acquired. The images resulted from the spatial distribution of the full mean Poynting vector including near-field radial components of the scattered electromagnetic field. Monochromatic images at frequencies close to and equal to the plasmon dipole and quadrupole resonance frequencies are discussed. The changes in images and radial components of the scattered electromagnetic field distribution at the scanning plane moved away from the particle surface from near-field to far-field region are discussed.

[1] W.L. Barnes, A. Dereux, and T.W. Ebbesen, “Surface plasmon subwavelength optics”, Nature 424, 824 (2003). http://dx.doi.org/10.1038/nature0193710.1038/nature01937Search in Google Scholar PubMed

[2] M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles”, Opt. Lett. 23, 1331 (1998). http://dx.doi.org/10.1364/OL.23.00133110.1364/OL.23.001331Search in Google Scholar

[3] M.L. Brongersma, J.W. Hartman, and H.A. Atwate, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit”, Phys. Rev. B62, 16356 (2000). 10.1103/PhysRevB.62.R16356Search in Google Scholar

[4] S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A.A.G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides”, Nat. Mater. 2, 229–232 (2003) http://dx.doi.org/10.1038/nmat85210.1038/nmat852Search in Google Scholar PubMed

[5] J.V. Hernandez, L.D. Noordam and F.J. Robicheaux, “Asymmetric response in a line of optically driven metallic nanospheres”, Phys. Chem. B109, 15808 (2005). 10.1021/jp0527352Search in Google Scholar PubMed

[6] A.F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nano-particle chains”, Phys. Rev. B74, 033402 (2006). 10.1103/PhysRevB.74.033402Search in Google Scholar

[7] C. Sönnichen, T. Franzl, T. Wilk, G. von Plessen, and J. Fe, “Plasmon resonances in large noble-metal clusters”, New J. Phys. 4, 93.1–93.8 (2002). 10.1088/1367-2630/4/1/393Search in Google Scholar

[8] J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles”, J. Chem. Phys. 116, 6755–6759 (2002). http://dx.doi.org/10.1063/1.146261010.1063/1.1462610Search in Google Scholar

[9] A. Arbouet, D. Christofilos, N. Del Fatti, and F. Vallée, “Direct measurement of the single-metal-cluster optical absorption”, Phys. Rev. Lett. 93, 127401 (2004). http://dx.doi.org/10.1103/PhysRevLett.93.12740110.1103/PhysRevLett.93.127401Search in Google Scholar PubMed

[10] D.S. Wang and M. Kerker, “Ehanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids”, Phys. Rev. B24, 1778–1790 (1981). 10.1103/PhysRevB.24.1777Search in Google Scholar

[11] S. Joon Lee, Z. Guan, H. Xu, and M. Moskovits, “Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS”, J. Phys. Chem. C111, 17985–17988 (2007). Search in Google Scholar

[12] S. Nie and S.R. Emory “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering”, Science 275, 1102–1106 (1997). http://dx.doi.org/10.1126/science.275.5303.110210.1126/science.275.5303.1102Search in Google Scholar PubMed

[13] K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment”, J. Phys. Chem. B107, 668–677 (2003). Search in Google Scholar

[14] Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue, and M. Nakano, “Observation of nanostructure by scanning near-field optical microscope with small sphere probe”, Sci. Technol. Adv. Mat. 8, 181–185 (2007). http://dx.doi.org/10.1016/j.stam.2007.02.01310.1016/j.stam.2007.02.013Search in Google Scholar

[15] C. Bai, Scanning Tunnelling Microscopy and its Applications, Springer, New York, 2000. Search in Google Scholar

[16] S. Efrima and B.V. Bronk, “Silver colloids impregnating or coating bacteria”, J. Phys. Chem. B102, 5947–5950 (1998). 10.1021/jp9813903Search in Google Scholar

[17] Y. Fu, J. Zhang, and J.R. Lakowicz “Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods”, J. Am. Chem. Soc. 132, 5540–5541 (2010). http://dx.doi.org/10.1021/ja909623710.1021/ja9096237Search in Google Scholar PubMed PubMed Central

[18] J.R. Lakowicz and Y. Fu, “Modification of single molecule fluorescence near metallic nanostructures”, Laser Photonics Rev. 3, 221–232 (2009). http://dx.doi.org/10.1002/lpor.20081003510.1002/lpor.200810035Search in Google Scholar PubMed PubMed Central

[19] J.L. West and N.J. Halas, “Engineered nanomaterials for biophotonics applications: Improving, sensing, imaging, and therapeutics”, Annu. Rev. Biomed. Eng. 5, 285 (2003). http://dx.doi.org/10.1146/annurev.bioeng.5.011303.12072310.1146/annurev.bioeng.5.011303.120723Search in Google Scholar PubMed

[20] K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy”, Phys. Rev. Lett. 93, 037401 (2004). http://dx.doi.org/10.1103/PhysRevLett.93.03740110.1103/PhysRevLett.93.037401Search in Google Scholar PubMed

[21] K. Aslan, J.R. Lakowicz, and C. Geddes, “Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives”, Curr. Opin. Chem. Biol. 9, 538 (2005). http://dx.doi.org/10.1016/j.cbpa.2005.08.02110.1016/j.cbpa.2005.08.021Search in Google Scholar PubMed PubMed Central

[22] E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski, and J.R. Lakowicz, “Multi-wavelength immunoassays using surface plasmon-coupled emission”, Biochem. Bioph. Res. Co. 313, 721 (2004). http://dx.doi.org/10.1016/j.bbrc.2003.12.01010.1016/j.bbrc.2003.12.010Search in Google Scholar PubMed PubMed Central

[23] S. Nie and S.R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering”, Science 275 1102 (1997). http://dx.doi.org/10.1126/science.275.5303.110210.1126/science.275.5303.1102Search in Google Scholar

[24] J Jiang, K. Bosnick, M. Maillard, and L. Brus, “Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals”, J. Phys. Chem. B107, 9964 (2003). 10.1021/jp034632uSearch in Google Scholar

[25] G. Laurent, N. Félidj, J. Aubard, G. Lévi, J.R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F.R. Aussenegg, “Surface enhanced Raman scattering arising from multipolar plasmon excitation”, J. Chem. Phys. 122, 011102 (2005). http://dx.doi.org/10.1063/1.184541110.1063/1.1845411Search in Google Scholar PubMed

[26] S. Eustis and M.A. El-Sayed “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes”, Chem. Soc. Rev. 35, 209–217 (2006). http://dx.doi.org/10.1039/b514191e10.1039/B514191ESearch in Google Scholar PubMed

[27] Y. Inouye and S. Kawata, “Near-field scanning optical microscope with a metallic probe tip”, Opt. Lett. 19, 159–161 (1994). http://dx.doi.org/10.1364/OL.19.00015910.1364/OL.19.000159Search in Google Scholar

[28] G. Kaupp, Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching: Application to Rough and Natural Surfaces, Springer, Heidelberg, 2006. Search in Google Scholar

[29] A. Derkachova and K. Kolwas, “Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles”, Eur. J. Phys. 144, 93–99 (2007). Search in Google Scholar

[30] K. Kolwas, A. Derkachova, and M. Shopa, “Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles”, J.Quantum. Spectrosc. Ra. 110, 1490–1501 (2009). http://dx.doi.org/10.1016/j.jqsrt.2009.03.02010.1016/j.jqsrt.2009.03.020Search in Google Scholar

[31] K. Kolwas and A. Derkachova, “Plasmonic abilities of gold and silver spherical nanoantennas in terms of size dependent multipolar resonance frequencies and plasmon damping rates”, accepted for publication in Opto-Electr. Rev. (2010). 10.2478/s11772-010-0043-6Search in Google Scholar

[32] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen”, Ann. Phys. 25, 376–445 (1908). (in German) Search in Google Scholar

[33] M. Born and E. Wolf, Principles of Optics, Pergamon Press, Oxford, 1975. Search in Google Scholar

[34] C.F. Bohren and D.R. Huffmann, Absorption and Scattering of Light by small Particles, Wiley-Interscience, New York, 1983. Search in Google Scholar

[35] F. Bassani and G. Pastori-Parravicini, Electronic States and Optical Transitions in Solids, Pergamon Press, Oxford, 1975. Search in Google Scholar

[36] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, 1995. 10.1007/978-3-662-09109-8Search in Google Scholar

[37] P.B. Johnson and R.W. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370–4379 (1972). 10.1103/PhysRevB.6.4370Search in Google Scholar

[38] W. Bazhan and K. Kolwas, “Near-field flat-plane images of spherical nanoparticles”, Comput. Phys. Comm. 165, 191–198 (2005). http://dx.doi.org/10.1016/j.cpc.2004.09.00310.1016/j.cpc.2004.09.003Search in Google Scholar

[39] T.A. El-Brolossy, T. Abdallah, M.B. Mohamed, S. Abdallah, K. Easawi, S. Negm, and H. Talaat, “Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique”, Eur. Phys. J. 153, 361–364 (2008). Search in Google Scholar

[40] F. Chen and R.L. Johnston, “Plasmonic properties of silver nanoparticles on two substrates”, Plasmonics 4, 147–152 (2009). http://dx.doi.org/10.1007/s11468-009-9087-110.1007/s11468-009-9087-1Search in Google Scholar

[41] F. Zhou, Z.Y. Li, and Y. Liu, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles”, J. Phys. Chem. C112, 20233–20240 (2008). 10.1021/jp807075fSearch in Google Scholar

Published Online: 2010-9-18
Published in Print: 2010-12-1

© 2010 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-010-0047-2/html
Scroll to top button