Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 7, 2011

Terahertz detectors and focal plane arrays

  • A. Rogalski EMAIL logo and F. Sizov
From the journal Opto-Electronics Review

Abstract

Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands.

In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

[1] P.H. Siegel, “Terahertz technology”, IEEE T. Microw. Theory 50, 910–928 (2002). http://dx.doi.org/10.1109/22.98997410.1109/22.989974Search in Google Scholar

[2] P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging Part I: Introduction and techniques”, Int. J. Infrared Millimeter Waves 27, 465–480 (2006). http://dx.doi.org/10.1007/s10762-006-9103-x10.1007/s10762-006-9103-xSearch in Google Scholar

[3] P.H. Siegel and R.J. Dengler, “Terahertz heterodyne imaging Part II: Instrumets”, Int. J. Infrared Milli. 27, 631–655 (2006). http://dx.doi.org/10.1007/s10762-006-9109-410.1007/s10762-006-9109-4Search in Google Scholar

[4] G. Chattopadhyay, “Submillimeter-wave coherent and incoherent sensors for space applications,” in Sensors. Advancements in Modeling, Design Issues, Fabrication and Practical Applications, pp. 387–414, edited by S.C. Mukhopadhyay and R.Y.M. Huang, Springer, New York, 2008. 10.1007/978-3-540-69033-7_19Search in Google Scholar

[5] T.W. Crowe, W.L. Bishop, D.W. Porterfield, J.L. Hesler, and R.M. Weikle, “Opening the terahertz window with integrated diode circuits”, IEEE J. Solid-St. Circ. 40, 2104–2110 (2005). http://dx.doi.org/10.1109/JSSC.2005.85459910.1109/JSSC.2005.854599Search in Google Scholar

[6] D. Dragoman and M. Dragoman, “Terahertz fields and applications”, Prog. Quant. Electron. 28, 1–66 (2004). http://dx.doi.org/10.1016/S0079-6727(03)00058-210.1016/S0079-6727(03)00058-2Search in Google Scholar

[7] J. Wei, D. Olaya, B.S. Karasik, S.V. Pereverzev, A.V. Sergeev, and M.E. Gershenzon, “Ultrasensitive hot-electron nanobolometers for terahertz astrophysics”, Nat. Nanotechnol. 3, 496–500 (2008). http://dx.doi.org/10.1038/nnano.2008.17310.1038/nnano.2008.173Search in Google Scholar

[8] A.H. Lettington, I.M. Blankson, M. Attia, and D. Dunn, “Review of imaging architecture”, Proc. SPIE 4719, 327–340 (2002). http://dx.doi.org/10.1117/12.47745710.1117/12.477457Search in Google Scholar

[9] A.W. Blain, I. Smail, R.J. Ivison, J.-P. Kneib, and D.T. Frayer, “Submillimetre galaxies”, Phys. Rep. 369, 111–176 (2002). http://dx.doi.org/10.1016/S0370-1573(02)00134-510.1016/S0370-1573(02)00134-5Search in Google Scholar

[10] D. Leisawitz, W.C. Danchi, M.J. DiPirro, L.D. Feinberg, D.Y. Gezari, M. Hagopian, W.D. Langer, J.C. Mather, S.H. Moseley, M. Shao, R.F. Silverberg, J.G. Staguhn, M.R. Swain, H.W. Yorke, and X. Zhang, “Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers”, Proc. SPIE 4013, 36–46 (2000). http://dx.doi.org/10.1117/12.39395710.1117/12.393957Search in Google Scholar

[11] “10 emerging technologies that will change your world”, Technology Review, 32–50, February 2004. Search in Google Scholar

[12] J. Zmuidzinas and P.L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics”, Proc. IEEE 92, 1597–1616 (2004). http://dx.doi.org/10.1109/JPROC.2004.83367010.1109/JPROC.2004.833670Search in Google Scholar

[13] B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology”, Nat. Mater. 1, 26–33 (2002). http://dx.doi.org/10.1038/nmat70810.1038/nmat708Search in Google Scholar PubMed

[14] D. Mittleman, Sensing with Terahertz Radiation, Springer-Verlag, Berlin, 2003. http://dx.doi.org/10.1007/978-3-540-45601-810.1007/978-3-540-45601-8Search in Google Scholar

[15] E.R. Brown, “Fundamentals of terrestrial millimetre-wave and THz remote sensing”, Int. J. High Speed Electron. 13, 99–1097 (2003). Search in Google Scholar

[16] R.M. Woodward, “Terahertz technology in global homeland security”, Proc. SPIE 5781, 22–31 (2005). http://dx.doi.org/10.1117/12.60639210.1117/12.606392Search in Google Scholar

[17] D.L. Woolard, R. Brown, M. Pepper, and M. Kemp, “Terahertz frequency sensing and imaging: A time of reckoning future applications?”, Proc. IEEE 93, 1722–1743 (2005). http://dx.doi.org/10.1109/JPROC.2005.85353910.1109/JPROC.2005.853539Search in Google Scholar

[18] H. Zhong, A. Redo-Sanchez, and X.-C. Zhang, “Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system”, Opt. Express 14, 9130–9141 (2006). http://dx.doi.org/10.1364/OE.14.00913010.1364/OE.14.009130Search in Google Scholar PubMed

[19] M. Tonouchi, “Cutting-edge terahertz technology”, Nat. Photonics 1, 97–105 (2007). http://dx.doi.org/10.1038/nphoton.2007.310.1038/nphoton.2007.3Search in Google Scholar

[20] A. Rostami, H. Rasooli, and H. Baghban, Terahertz Technology. Fundamentals and Applications, Springer, Berlin, 2011. 10.1007/978-3-642-15793-6Search in Google Scholar

[21] T.G. Phillips and J. Keene, “Submillimeter astronomy”, Proc. IEEE 80, 1662–1678 (1992). http://dx.doi.org/10.1109/5.17524810.1109/5.175248Search in Google Scholar

[22] R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kuerner, “Short-range ultra-broadband terahertz communications: concept and perspectives”, IEEE Antenn. Propag. M. 49, 24–35 (2007). http://dx.doi.org/10.1109/MAP.2007.445584410.1109/MAP.2007.4455844Search in Google Scholar

[23] F. Sizov, “THz radiation sensors”, Opto-Electron. Rev. 18, 10–36 (2010). http://dx.doi.org/10.2478/s11772-009-0029-410.2478/s11772-009-0029-4Search in Google Scholar

[24] F. Sizov and A. Rogalski, “THz detectors”, Prog. Quant. Electron. 34, 278–347 (2010). http://dx.doi.org/10.1016/j.pquantelec.2010.06.00210.1016/j.pquantelec.2010.06.002Search in Google Scholar

[25] S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, “A single-photon detector in the far-infrared range”, Nature 403, 405–407 (2000). http://dx.doi.org/10.1038/3500016610.1038/35000166Search in Google Scholar PubMed

[26] S. Komiyama, “Single-photon detectors in terahertz region”, IEEE J. Sel. Top. Quant. 17, 54–66 (2011). http://dx.doi.org/10.1109/JSTQE.2010.204889310.1109/JSTQE.2010.2048893Search in Google Scholar

[27] G. Chattopadhyay, “Heterodyne arrays at submillimeter wavelengths”, 38-th General Assembly of Int. Union of Radio Science, New Delhi, October, 2005. Search in Google Scholar

[28] P.F. Goldsmith, Ph. Appleton, L. Armus, J. Bauer, D. Benford, A. Blaind, M. Bradford, G. Bryden, M. Dragovan, M. Harwit, G. Helou, W.D. Langer, D. Leisawitz, C. Paineb, and H. Yorke, “CALISTO: The cryogenic aperture large infrared space telescope observatory”, http://www.ipac.caltech.edu/DecadalSurvey/farir.html]). Search in Google Scholar

[29] M. Harwit, G. Helou, L. Armus, C.M. Bradford, P.F. Goldsmith, M. Hauser, D. Leisawitz, D.F. Lester, G. Rieke, and S.A. Rinehart, “Far-infrared/submillimeter astronomy from space tracking an evolving universe and the emergence of life”, http://www.ipac.caltech.edu/DecadalSurvey/farir.html Search in Google Scholar

[30] J.J. Bock, “Superconducting detector arrays for far-infrared to mm-wave astrophysics”, http://cmbpol.uchicago.edu/depot/pdf/white-paper_j-bock.pdf Search in Google Scholar

[31] S. Hargreaves and R.A. Lewis, “Terahertz imaging: Materials and methods”, J. Mater. Sci.: Mater. Electron. 18, S299–S303 (2007). http://dx.doi.org/10.1007/s10854-007-9220-x10.1007/s10854-007-9220-xSearch in Google Scholar

[32] N. Karpowicz, H. Zhong, J. Xu, K.-I. Lin, J.-S. Hwang, and X.-C. Zhang, “Non-destructive sub-THz CW imaging”, Proc. SPIE 5727, 132–142 (2005). http://dx.doi.org/10.1117/12.59053910.1117/12.590539Search in Google Scholar

[33] A. Dobroiu, M. Yamashita, Y.N. Ohshima, Y. Morita, C. Otani, and K. Kawase, “Terahertz imaging system based on a backward oscillator”, Appl. Opt. 43, 5637–5646 (2004). http://dx.doi.org/10.1364/AO.43.00563710.1364/AO.43.005637Search in Google Scholar PubMed

[34] A.W.M. Lee, Q. Qin, S. Kumar, B.S. Williams, Q. Hu, and J.L. Reno, “Real-time terahertz imaging over a standoff distance (> 25 meters),” Appl. Phys. Lett. 89, 141125 (2006). http://dx.doi.org/10.1063/1.236021010.1063/1.2360210Search in Google Scholar

[35] A.W.M. Lee, B.S. Williams, S. Kumar, Q. Hu, and J. L. Reno, “Real-time imaging using a 4.3-THz quantum cascade laser and a 320×240 microbolometer focal-plane array”, IEEE Photon. Tech. L. 18, 1415–1417 (2006). http://dx.doi.org/10.1109/LPT.2006.87722010.1109/LPT.2006.877220Search in Google Scholar

[36] F.F. Sizov, V.P. Reva, A.G. Golenkov, and V.V. Zabudsky, “Uncooled detector challenges for THz/sub-THz arrays imaging”, J Infrared Millim. Te., DOI 10.1007/s10762-011-9789-2 (2011). 10.1007/s10762-011-9789-2Search in Google Scholar

[37] M.A. Kinch and B.V. Rollin, “Detection of millimetre and sub-millimetre wave radiation by free carrier absorption in a semiconductor”, Brit. J. Appl. Phys. 14, 672–676 (1963). http://dx.doi.org/10.1088/0508-3443/14/10/31710.1088/0508-3443/14/10/317Search in Google Scholar

[38] Y. Nakagawa and H. Yoshinaga, “Characteristics of high-sensitivity Ge bolometer”, Jpn. J. Appl. Phys. 9, 125–131 (1970). http://dx.doi.org/10.1143/JJAP.9.12510.1143/JJAP.9.125Search in Google Scholar

[39] T.-L. Hwang, S.E. Scharz, and D.B. Rutledge, “Microbolometers for infrared detection”, Appl. Phys. Lett. 34, 773–776 (1979). http://dx.doi.org/10.1063/1.9066910.1063/1.90669Search in Google Scholar

[40] E.E. Haller, M.R. Hueschen, and P.L. Richards, “Ge:Ga photoconductors in low infrared backgrounds”, Appl. Phys. Lett. 34, 495–497 (1979). http://dx.doi.org/10.1063/1.9086110.1063/1.90861Search in Google Scholar

[41] P.L. Richards, “Bolometers for infrared and millimeter waves”, J. Appl. Phys. 76, 1–24 (1994). http://dx.doi.org/10.1063/1.35712810.1063/1.357128Search in Google Scholar

[42] J.E. Huffman, “Infrared detectors for 2 to 220 μm astronomy”, Proc. SPIE 2274, 157–169 (1995). http://dx.doi.org/10.1117/12.18924110.1117/12.189241Search in Google Scholar

[43] W.W. Hübers, S.G. Pavlov, K. Holldack, U. Schade, and G. Wüstefeld, “Long wavelength response of unstressed and stressed Ge:Ga detectors”, Proc. SPIE 6275, 627505 (2008). http://dx.doi.org/10.1117/12.67158010.1117/12.671580Search in Google Scholar

[44] A. Poglish, R.O. Katterloher, R. Hoenle, J.W. Beeman, E.E. Haller, H. Richter, U. Groezinger, N.M. Haegel, and A. Krabbe, “Far-infrared photoconductors for Herschel and SO-FIA”, Proc. SPIE 4855, 115–128 (2003). http://dx.doi.org/10.1117/12.45918410.1117/12.459184Search in Google Scholar

[45] M. Kenyon, P.K. Day, C.M. Bradford, J.J. Bock, and H.G. Leduc, “Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy”, Proc. SPIE 6275, 627508 (2006). http://dx.doi.org/10.1117/12.67203610.1117/12.672036Search in Google Scholar

[46] A.D. Turner, J.J. Bock, J.W. Beeman, J. Glenn, P.C. Hargrave, V.V. Hristov, H.T. Nguyen, F. Rahman, S. Sethuraman, and A.L. Woodcraft, “Silicon nitride micromesh bolometer array for submillimeter astrophysics”, Appl. Optics 40, 4921–4932 (2001). http://dx.doi.org/10.1364/AO.40.00492110.1364/AO.40.004921Search in Google Scholar PubMed

[47] B.S. Karasik, D. Olaya, J. Wei, S. Pereverzev, M.E. Gershenson, J.H. Kawamura, W.R. McGrath, and A. V. Sergeev, “Record-low NEP in hot-electron titanium nanobolometers”, IEEE T. Appl. Supercon. 17, 293–297 (2007). http://dx.doi.org/10.1109/TASC.2007.89716710.1109/TASC.2007.897167Search in Google Scholar

[48] H.-W. Hübers, “Terahertz heterodyne receivers”, IEEE J. Sel. Top. Quant. 14, 378–391 (2008). http://dx.doi.org/10.1109/JSTQE.2007.91396410.1109/JSTQE.2007.913964Search in Google Scholar

[49] D.J. Benford, “Transition edge sensor bolometers for CMB polarimetry”, http://cmbpol.uchicago.edu/workshops/technology2008/depot/cmbpol_technologies_benford_jcps_4. pdf Search in Google Scholar

[50] P.L. Richards, “Cosmic microwave background experiments — past, present and future”, http://sciencestage.com/d/5334058/ Search in Google Scholar

[51] F. Sizov, Photoelectronics for Vision Systems in Invisible Spectral Ranges, Akademperiodika, Kiev, 2008. (in Russian). Search in Google Scholar

[52] N. Kopeika, A System Engineering Approach to Imaging, SPIE Optical Eng. Press, Bellingham, 1998. 10.1117/3.2265069Search in Google Scholar

[53] A.D. Turner, J.J. Bock, J.W. Beeman, J. Glenn, P.C. Hargrave, V.V. Hristov, H.T. Nguyen, F. Rahman, S. Sethuraman, and A.L. Woodcraft, “Silicon nitride micromesh bolometer array for submillimeter astrophysics”, Appl. Optics 40, 4921–4932 (2001). http://dx.doi.org/10.1364/AO.40.00492110.1364/AO.40.004921Search in Google Scholar

[54] “Detectors needs for long wavelength astrophysics”, A Report by the Infrared, Submillimeter, and Millimeter Detector Working Group, June 2002; http://safir.gsfc.nasa.gov/docs/ISMDWG_final.pdf Search in Google Scholar

[55] J. Glenn, P.A.R. Ade, M. Amarie, J.J. Bock, S.F. Edgington, A. Goldin, S. Golwala, D. Haig, A.E. Lange, G. Laurent, P.D. Maudkopf, M. Yun, and H. Nguyen, “Current status of Bolocam: a large-format millimeter-wave bolometer camera”, Proc. SPIE 4855, 30–40 (2003). http://dx.doi.org/10.1117/12.45936910.1117/12.459369Search in Google Scholar

[56] G.M. Voellmer, C.A. Allen, M.J. Amato, S.R. Babu, A.E. Bartels, D.J. Benford, R.J. Derro, C.D. Dowell, D.A. Harper, M.D. Jhabvala, S.H. Moseley, T. Rennick, P.J. Shirron, W.W. Smith, and J.G. Staguhn, “Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II”, Proc. SPIE 4855, 63–72 (2003). http://dx.doi.org/10.1117/12.45931510.1117/12.459315Search in Google Scholar

[57] J.G. Staguhn, D.J. Benford, F. Pajot, T.J. Ames, J.A. Chervenak, E.N. Grossman, K.D. Irwin, B. Maffei, S.H. Moseley, T.G. Phillips, C.D. Reintsema, C. Rioux, R.A. Shafer, and G.M. Vollmer, “Astronomical demonstration of superconducting bolometer arrays”, Proc. SPIE 4855, 100–107 (2003). http://dx.doi.org/10.1117/12.45937710.1117/12.459377Search in Google Scholar

[58] T.W. Crowe, R.J. Mattauch, H.-P. Roser, W.L. Bishop, W.C.B. Peatman, and X. Liu, “GaAs Schottky diodes for THz mixing applications”, Proc. IEEE 80, 1827–1841 (1992). http://dx.doi.org/10.1109/5.17525810.1109/5.175258Search in Google Scholar

[59] G.L. Carr, M.C. Martin, W.R. McKinney, G.R. Neil, K. Jordan, and G.P. Williams, “High power terahertz radiation from relativistic electrons”, Nature 420, 153 (2002). http://dx.doi.org/10.1038/nature0117510.1038/nature01175Search in Google Scholar PubMed

[60] M. Rodwell, E. Lobisser, M. Wistey, V. Jain, A. Baraskar, E. Lind, J. Koo, B. Thibeault, A.C. Gossard, Z. Griffith, J. Hacker, M. Urteaga, D. Mensa, R. Pierson, and B. Brar, “Development of THz transistors and (300–3000 GHz) sub-mm-wave integrated circuits”, The 11th Inter. Symp. on Wireless Personal Multimedia Communications (WPMC 2008); http://www.ece.ucsb.edu/Faculty/Rodwell/publications/2008_9_sept_wpmc_rodwell_digest.pdf Search in Google Scholar

[61] B.S. Williams, “Terahertz quantum-cascade lasers”, Nat. Photonics 1, 517–525 (2007). http://dx.doi.org/10.1038/nphoton.2007.16610.1038/nphoton.2007.166Search in Google Scholar

[62] J.R. Tucker and M.J. Feldman, “Quantum detection at millimeter wavelength”, Rev. Mod. Phys. 57, 1055–1113 (1985). http://dx.doi.org/10.1103/RevModPhys.57.105510.1103/RevModPhys.57.1055Search in Google Scholar

[63] C.M. Bradford, B.J. Naylor, J. Zmuidzinas, J.J. Bock, J. Gromke, H. Nguyen, M. Dragovan, M. Yun, L. Earle, J. Glenn, H. Matsuhara, P.A.R. Ade, and L. Duband, “WaFIRS: A waveguide far-IR spectrometer: Enabling spectroscopy of high-z galaxies in the far-IR and submillimeter”, Proc. SPIE 4850, 1137–1148 (2003). http://dx.doi.org/10.1117/12.46157210.1117/12.461572Search in Google Scholar

[64] M. Kenyon, P.K. Day, C.M. Bradford, J.J. Bock, and H.G. Leduc, “Progress on background-limited membrane-isolated TES bolometers for far-IR/submillimeter spectroscopy”, Proc. SPIE 6275, 627508 (2006). http://dx.doi.org/10.1117/12.67203610.1117/12.672036Search in Google Scholar

[65] B.S. Karasik and R. Cantor, “Optical NEP in hot-electron nanobolometers”, 21 stInternational Symposium on Space Terahertz Technology, Oxford, 23–25 March, 2010. Search in Google Scholar

[66] J.C. Mather, E.S. Cheng, D.A. Cottingham, R.E. Eplee, D.J. Fixsen, T. Hewagama, R.B. Isaacman, K.A. Jensen, S.S. Meyer, P.D. Noerdlinger, S.M. Read, L.P. Rosen, R.A. Shafer, E.L. Wright, C.L. Bennett, N.W. Boggess, M.G. Hauser, T. Kelsall, S.H. Moseley, R.F. Silverberg, G.F. Smoot, R. Weiss, and D.T. Wilkinson, “Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument”, Astrophys. J. 420, 439–444 (1994). http://dx.doi.org/10.1086/17357410.1086/173574Search in Google Scholar

[67] J. Dunkley, A. Amblard, C. Baccigalupi, M. Betoule, D. Chuss, A. Cooray, J. Delabrouille, C. Dickinson, G. Dobler, J. Dotson, H.K. Eriksen, D. Finkbeiner, D. Fixsen, P. Fosalba, A. Fraisse, C. Hirata, A. Kogut, J. Kristiansen, C. Lawrence, A.M. Magalhaes, M.A. Miville-Deschenes, S. Meyer, A. Miller, S.K. Naess, L. Page, H.V. Peiris, N. Phillips, E. Pierpaoli, G. Rocha, J.E. Vaillancourt, and L. Verde, “A program of technology development and of sub-orbital observations of the cosmic microwave background polarization leading to and including a satellite mission”, A Report for the Astro-2010 Decadal Committee on Astrophysics, April, 2009. Search in Google Scholar

[68] D.H. Auston, “Picosecond optoelectronic switching and gating in silicon”, Appl. Phys. Lett. 26, 101–103 (1975). http://dx.doi.org/10.1063/1.8807910.1063/1.88079Search in Google Scholar

[69] P. LeFur and D.H. Auston, “A kilovolt picosecond optoelectronic switch and Pockels cell”, Appl. Phys. Lett. 28, 21–33 (1976). http://dx.doi.org/10.1063/1.8856510.1063/1.88565Search in Google Scholar

[70] J.A. Valdmani, G. Mourou, and C.W. Gabel, “Picosecond electrooptic sampling system”, Appl. Phys. Lett. 41, 211–212 (1982). http://dx.doi.org/10.1063/1.9348510.1063/1.93485Search in Google Scholar

[71] D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with teraHz beams of dielectrics and semiconductors”, J. Opt. Soc. B7, 2006–2015 (1990). 10.1364/JOSAB.7.002006Search in Google Scholar

[72] M. Tani, Y. Hirota, C. Que, S. Tanaka, R. Hattori, M. Yamaguchi, S. Nishizawa, and M. Hangyo, “Novel terahertz photoconductive antennas”, Int. J. Infrared Milli. 27, 531–546 (2006). http://dx.doi.org/10.1007/s10762-006-9105-810.1007/s10762-006-9105-8Search in Google Scholar

[73] D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, “Recent advances in terahertz imaging”, Appl. Phys. B, DOI 10.1007/s003409900011 (1999). 10.1007/s003400050750Search in Google Scholar

[74] W.L. Chan, J. Deibel, and D.M. Mittleman, “Imaging with terahertz radiation”, Rep. Prog. Phys. 70, 1325–1379 (2007). http://dx.doi.org/10.1088/0034-4885/70/8/R0210.1088/0034-4885/70/8/R02Search in Google Scholar

[75] L. Xu, X.-C. Zhang, and D.H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials”, Appl. Phys. Lett. 61, 1784–1786 (1992). http://dx.doi.org/10.1063/1.10842610.1063/1.108426Search in Google Scholar

[76] E.R. Brown, K.A. McIntosh, F.W. Smith, K.B. Nichols, M.J. Manfra, C.L. Dennis, and J.P. Mattia, “Milliwatt output levels and superquadratic bias dependence in a low-temperature-grown GaAs photomixer”, Appl. Phys. Lett. 64, 3311–3313 (1994). http://dx.doi.org/10.1063/1.11128910.1063/1.111289Search in Google Scholar

[77] M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs based photoconductive antenna using 1.55 μm probe”, Appl. Phys. Lett. 77, 1396–1398 (2000). http://dx.doi.org/10.1063/1.128991410.1063/1.1289914Search in Google Scholar

[78] M. Suzukia and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femto-second optical pulses”, Appl. Phys. Lett. 86, 163504 (2005). http://dx.doi.org/10.1063/1.190181710.1063/1.1901817Search in Google Scholar

[79] H. Page, S. Malik, M. Evans, I. Gregory, I. Farrer, and D. Ritchie, “Waveguide coupled terahertz photoconductive antennas: Toward integrated photonic terahertz devices”, Appl. Phys. Lett. 92, 163502 (2008). http://dx.doi.org/10.1063/1.290953910.1063/1.2909539Search in Google Scholar

[80] D.P. Neikirk, D.B. Rutledge, and M.S. Mucha, “Far-infrared imaging antenna arrays”, Appl. Phys. Lett. 40, 203–205 (1982). http://dx.doi.org/10.1063/1.9305310.1063/1.93053Search in Google Scholar

[81] D.B. Rutledge, D.P. Neikirk, and D.P. Kasilingam, “Integrated-circuit antennas”, in: Infrared and Millimeter Waves, Vol. 10, pp. 1–90, ed. K.J. Button, Academic Press, New York, 1983. Search in Google Scholar

[82] J. Zhang, Y. Hong, S.L. Braunstein, and K.A. Shore, “Terahertz pulse generation and detection with LT-GaAs photoconductive antenna”, IEE P-Optoelectron. 151, 98–101 (2004). http://dx.doi.org/10.1049/ip-opt:2004011310.1049/ip-opt:20040113Search in Google Scholar

[83] E.R. Brown, A.W.M. Lee, B.S. Navi, and J.E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region”, Microw. Opt. Techn. Let. 48, 524–529 (2006). http://dx.doi.org/10.1002/mop.2139810.1002/mop.21398Search in Google Scholar

[84] J. Grade, P. Haydon, and D. van der Weide, “Electronic terahertz antennas and probes for spectroscopic detection and diagnostics”, Proc. IEEE 95, 1583–1591 (2007). http://dx.doi.org/10.1109/JPROC.2007.89890010.1109/JPROC.2007.898900Search in Google Scholar

[85] R.C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors”, P. IRE 47, 1495–1502 (1959). http://dx.doi.org/10.1109/JRPROC.1959.28704710.1109/JRPROC.1959.287047Search in Google Scholar

[86] A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2011. Search in Google Scholar

[87] T. Ueda, Z. An, and S. Komiyama, “Temperature dependence of novel single-photon detectors in the long-wavelength infrared range”, J. Infrared Millim. Te.; DOI 10.1007/s10762-010-9659-3 (2010). 10.1007/s10762-010-9659-3Search in Google Scholar

[88] A.G.U. Perera, G. Ariyawansaa, P.V.V. Jayaweeraa, S.G. Matsika, M. Buchanan, and H.C. Liu, “Semiconductor terahertz detectors and absorption enhancement using plasmons”, Microelectron. J. 39, 601–606 (2008). http://dx.doi.org/10.1016/j.mejo.2007.07.08610.1016/j.mejo.2007.07.086Search in Google Scholar

[89] H.C. Liu, H. Luo, C.-Y. Song, Z.R. Wasilewski, A.J. SpringThorpe, and J.C. Cao, “Terahertz quantum well photodetectors”, IEEE J. Sel. Top. Quant. 14, 374–377 (2008). http://dx.doi.org/10.1109/JSTQE.2007.91071010.1109/JSTQE.2007.910710Search in Google Scholar

[90] D.G. Esaev, M.B.M. Rinzan, S.G. Matsik, and A.G.U. Perera, “Design and optimization of GaAs/AlGaAs hetero-junction infrared detectors”, J. Appl. Phys. 96, 4588–4597 (2004); A.G.U. Perera and W.Z. Shen, “GaAs homojunction interfacial workfunction internal photoemission (HIWIP) far-infrared devices”, Opto-Electron Rev. 7, 153–180 (1999). http://dx.doi.org/10.1063/1.1786342Search in Google Scholar

[91] H.C. Liu, “Quantum dot infrared photodetector”, Opto-Electron. Rev. 11, 1–5 (2003). Search in Google Scholar

[92] J.A. Ratches, “Current and future trends in military night vision applications”, Ferroelectrics 342, 183–192 (2006). http://dx.doi.org/10.1080/0015019060094635110.1080/00150190600946351Search in Google Scholar

[93] M. Kohin and N. Butler, “Performance limits of uncooled VOx microbolometer focal-plane arrays”, Proc. SPIE 5406, 447–453 (2004). http://dx.doi.org/10.1117/12.54248210.1117/12.542482Search in Google Scholar

[94] W. Kruse, L.D. McGlauchlin and R.B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962. Search in Google Scholar

[95] E.H. Putley, “Thermal detectors”, in Optical and Infrared Detectors, pp. 71–100, edited by R.J. Keyes, Springer, Berlin, 1977. 10.1007/978-3-540-37378-0_3Search in Google Scholar

[96] P.W. Kruse, Uncooled Thermal Imaging, SPIE Press, Bellingham, 2001. http://dx.doi.org/10.1117/3.41535110.1117/3.415351Search in Google Scholar

[97] G.H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter, Cambridge University Press, Cambridge, 2003. 10.1017/CBO9780511606496Search in Google Scholar

[98] W. Whatmore, “Pyroelectric devices and materials”, Rep. Prog. Phys. 49, 1335–1386 (1986). http://dx.doi.org/10.1088/0034-4885/49/12/00210.1088/0034-4885/49/12/002Search in Google Scholar

[99] P. Muralt, “Micromachined infrared detectors based on pyroelectric thin films”, Rep. Prog. Phys. 64, 1339–1338 (2001). http://dx.doi.org/10.1088/0034-4885/64/10/20310.1088/0034-4885/64/10/203Search in Google Scholar

[100] V.G. Bozhkov, “Semiconductor detectors, mixers, and frequency multipliers for the terahertz band”, Radiophys. Quantum. El. 46, 631–656 (2003). http://dx.doi.org/10.1023/B:RAQE.0000024993.40125.2b10.1023/B:RAQE.0000024993.40125.2bSearch in Google Scholar

[101] A. Van Der Ziel, “Infrared detection and mixing in heavily doped Schottky barrier diodes”, J. Appl. Phys. 47, 2059–2068 (1976). http://dx.doi.org/10.1063/1.32293610.1063/1.322936Search in Google Scholar

[102] H.A. Watson, Microwave Semiconductor Devices and their Circuit Applications, McGraw-Hill, New York, 1969. Search in Google Scholar

[103] E.J. Becklake, C.D. Payne, and B.E. Pruer, “Submillimetre performance of diode detectors using Ge, Si and GaAs”, J. Phys. D: Appl. Phys. 3, 473–481 (1970). http://dx.doi.org/10.1088/0022-3727/3/4/30610.1088/0022-3727/3/4/306Search in Google Scholar

[104] D.T. Young and J.C. Irvin, “Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique”, Proc. IEEE 53, 2130–2132 (1965). http://dx.doi.org/10.1109/PROC.1965.451110.1109/PROC.1965.4511Search in Google Scholar

[105] T.W. Crowe, D.P. Porterfield, J.L. Hesler, W.L. Bishop, D.S. Kurtz, and K. Hui, “Terahertz sources and detectors”, Proc SPIE 5790, 271–280 (2005). http://dx.doi.org/10.1117/12.60430910.1117/12.604309Search in Google Scholar

[106] H.P. Röser, H.-W. Hübers, E Bründermann, and M.F. Kimmitt, “Observation of mesoscopic effects in Schottky diodes at 300 K when used as mixers at THz frequencies”, Semicond. Sci. Tech. 11, 1328–1332 (1996). http://dx.doi.org/10.1088/0268-1242/11/9/01410.1088/0268-1242/11/9/014Search in Google Scholar

[107] T.W. Crowe and W.C.B. Peatman, “GaAs Schottky diodes for mixing applications beyond 1 THz”, 2nd Int. Symp. on Space Terahertz Technology 323–339, Pasadena, February 26–28, 1991, http://www.nrao.edu/meetings/isstt/papers/1991/1991323339.pdf Search in Google Scholar

[108] T.W. Crowe, “GaAs Schottky barrier mixer diodes for the frequency range 1–10 THz”, Int. J. Infrared Milli. 11, 765–777 (1990). http://dx.doi.org/10.1007/BF0101004510.1007/BF01010045Search in Google Scholar

[109] H. Kräutle, E. Sauter, and G.V. Schultz, “Antenna characteristics of whisker diodes used at submillimeter receivers”, Infrared Phys. 17, 477–483 (1977). http://dx.doi.org/10.1016/0020-0891(77)90058-610.1016/0020-0891(77)90058-6Search in Google Scholar

[110] R. Titz, B. Auel, W. Esch, H.P. Röser, and G.W. Schwaab, “Antenna measurements of open-structure Schottky mixers and determination of optical elements for a heterodyne system at 184, 214 and 287 μm”, Infrared Phys. 30, 435–441 (1990). http://dx.doi.org/10.1016/0020-0891(90)90003-E10.1016/0020-0891(90)90003-ESearch in Google Scholar

[111] I. Mehdi, G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, F. Maiwald, and A. Maestrini, “THz multiplier circuits”, IEEE MTT-S Intern. Microwave Symp. Digest, 341–344, San Francisco, 2006. 10.1109/MWSYM.2006.249521Search in Google Scholar

[112] S.M. Marazita, W.L. Bishop, J.L. Hesler, K. Hui, W.E. Bowen, and T.W. Crowe, “Integrated GaAs Schottky mixers by spin-on-dielectric wafer bonding”, IEEE T. Electron. Dev. 47, 1152–1156 (2000). http://dx.doi.org/10.1109/16.84295610.1109/16.842956Search in Google Scholar

[113] P. Siegel, R.P. Smith, M.C. Gaidis, and S. Martin, “2.5-THz GaAs monolithic membrane-diode mixer”, IEEE T. Microw. Theory 47, 596–604 (1999). http://dx.doi.org/10.1109/22.76316110.1109/22.763161Search in Google Scholar

[114] J.A. Copeland, “Diode edge effects on doping profile measurements”, IEEE T. Electron Dev. 17, 404–407 (1970). http://dx.doi.org/10.1109/T-ED.1970.1699610.1109/T-ED.1970.16996Search in Google Scholar

[115] V.I. Piddyachiy, V.M. Shulga, A.M. Korolev, and V.V. Myshenko, “High doping density Schottky diodes in the 3 mm wavelength cryogenic heterodyne receiver”, Int. J. Infrared Milli. 26, 1307–1315 (2005). http://dx.doi.org/10.1007/s10762-005-7605-610.1007/s10762-005-7605-6Search in Google Scholar

[116] J.L. Hesler and T.W. Crowe, “Responsivity and noise measurements of zero-bias Schottky diode detectors”, http://www.virginiadiodes.com/VDI/pdf/VDI%20Detector%20Char%20ISSTT2007.pdf Search in Google Scholar

[117] H. Kazemi, G. Nagy, L Tran, E. Grossman, E.R. Brown, A.C. Gossard, G.D. Boreman, B. Lail, A.C. Young, and J.D. Zimmerman, “Ultra sensitive ErAs/InAlGaAs direct detectors for millimeter wave and THz imaging applications”, IEEE/MTT Int. Microwave Symposium, 1367–1370 (2007). 10.1109/MWSYM.2007.380467Search in Google Scholar

[118] E.R. Brown, A.C. Young, J.E. Bjarnason, J.D. Zimmerman, A.C. Gossard, and H. Kazemi, “Millimeter and sub-millimeter wave performance of an ErAs:InAlGaAs Schottky diode coupled to a single-turn square spiral”, Int. J. High Speed Electron. 17, 383–394 (2007). http://dx.doi.org/10.1142/S012915640700457610.1142/S0129156407004576Search in Google Scholar

[119] http://www.darpa.mil/mto/programs/tift/pdf/MTT_THz_Workshop.pdf Search in Google Scholar

[120] F. Maiwald, F. Lewen, B. Vowinkel, W. Jabs, D.G. Paveljev, M. Winnerwisser, and G. Winnerwisser, “Planar Schottky diode frequency multiplier for molecular spectroscopy up to 1.3 THz”, IEEE Microw. Guided W. 9, 198–200 (1999). http://dx.doi.org/10.1109/75.76676310.1109/75.766763Search in Google Scholar

[121] D.H. Martin, Spectroscopic Techniques for Far-infrared, Submillimeter and Millimeter Waves, North-Holland, Amsterdam, 1967. Search in Google Scholar

[122] B.V. Rollin and E.L. Simmons, “Long wavelength infrared photoconductivity of silicon at low temperatures”, Proc. Phys. Soc. B65, 995–996 (1952). 10.1088/0370-1301/65/12/115Search in Google Scholar

[123] E. Burstein, J.J. Oberly and J.W. Davisson, “Infrared photoconductivity due to neutral impurities in silicon”, Phys. Rev. 89, 331–332 (1953). http://dx.doi.org/10.1103/PhysRev.89.33110.1103/PhysRev.89.331Search in Google Scholar

[124] P.R. Bratt, “Impurity germanium and silicon infrared detectors”, in Semiconductors and Semimetals, Vol. 12, pp. 39–142, edited by R.K. Willardson and A.C. Beer, Academic Press, New York, 1977. 10.1016/S0080-8784(08)60147-7Search in Google Scholar

[125] J. Wolf, C. Gabriel, U. Grözinger, I. Heinrichsen, G. Hirth, S. Kirches, D. Lemke, J. Schubert, B. Schulz, C. Tilgner, M. Boison, A. Frey, I. Rasmussen, R. Wagner and K. Proetel, “Calibration facility and preflight characterization of the photometer in the Infrared Space Observatory”, Opt. Eng. 33, 26–36 (1994). http://dx.doi.org/10.1117/12.15539510.1117/12.155395Search in Google Scholar

[126] G.H. Rieke, M.W. Werner, R.I. Thompson, E.E. Becklin, W.F. Hoffmann, J.R. Houck, F.J. Low, W.A. Stein, and F.C. Witteborn, “Infrared astronomy after IRAS”, Science 231, 807–814 (1986). http://dx.doi.org/10.1126/science.231.4740.80710.1126/science.231.4740.807Search in Google Scholar

[127] J. Leotin, “Far infrared photoconductive detectors”, Proc. SPIE 666, 81–100 (1986). http://dx.doi.org/10.1117/12.93882310.1117/12.938823Search in Google Scholar

[128] Sclar, “Properties of doped silicon and germanium infrared detectors”, Prog. Quant. Electron. 9, 149–257 (1984). http://dx.doi.org/10.1016/0079-6727(84)90001-610.1016/0079-6727(84)90001-6Search in Google Scholar

[129] E.E. Haller, “Advanced far-infrared detectors”, Infrared Phys. Techn. 35, 127–146 (1994) http://dx.doi.org/10.1016/1350-4495(94)90074-410.1016/1350-4495(94)90074-4Search in Google Scholar

[130] N.M. Haegel and E.E. Haller, “Extrinsic germanium photoconductor material: crystal growth and characterization”, Proc. SPIE 659, 188–194 (1986). http://dx.doi.org/10.1117/12.93855910.1117/12.938559Search in Google Scholar

[131] J.-Q. Wang, P.I. Richards, J.W. Beeman, J.W. Haegel, and E.E. Haller, “Optical efficiency of far-infrared photoconductors”, Appl. Opt. 25, 4127–4134 (1986). http://dx.doi.org/10.1364/AO.25.00412710.1364/AO.25.004127Search in Google Scholar PubMed

[132] A.G. Kazanskii, P.L. Richards and E.E, Haller, “Far-infrared photoconductivity of uniaxially stressed germanium”, Appl. Phys. Lett. 31, 496–497 (1977). http://dx.doi.org/10.1063/1.8975510.1063/1.89755Search in Google Scholar

[133] E.E. Haller, M.R. Hueschen, and P.L. Richards, “Ge:Ga photoconductors in low infrared backgrounds”, Appl. Phys. Lett. 34, 495–497 (1979). http://dx.doi.org/10.1063/1.9086110.1063/1.90861Search in Google Scholar

[134] J. Wolf, C. Gabriel, U. Grözinger, I. Heinrichsen, G. Hirth, S. Kirches, D. Lemke, J. Schubert, B. Schulz, C. Tilgner, M. Boison, A. Frey, I. Rasmussen, R. Wagner and K. Proetel, “Calibration facility and preflight characterization of the photometer in the Infrared Space Observatory”, Opt. Eng. 33, 26–36 (1994). http://dx.doi.org/10.1117/12.15539510.1117/12.155395Search in Google Scholar

[135] E. Young, J. Stansberry, K. Gordon, and J. Cadien, “Properties of germanium photoconductor detectors”, in Proc. Conf. ESA SP-481, pp. 231–235, edited by L. Metcalfe, A. Salama, S.B. Peschke, and M.F. Kessler, VilSpa, 2001. Search in Google Scholar

[136] N. Hiromoto, M. Fujiwara, H. Shibai and H. Okuda, “Ge:Ga far-infrared photoconductors for space applications”, Jpn. J. Appl. Phys. 35, 1676–1680 (1996). http://dx.doi.org/10.1143/JJAP.35.167610.1143/JJAP.35.1676Search in Google Scholar

[137] Y. Doi, S. Hirooka, A. Sato, M. Kawada, H. Shibai, Y. Okamura, S. Makiuti, T. Nakagawa, N. Hiromoto, and M. Fujiwara, “Large-format and compact stressed Ge:Ga array for the Astro-F (IRIS) mission”, Adv. Space Res. 30, 2099–2104 (2002). http://dx.doi.org/10.1016/S0273-1177(02)00594-X10.1016/S0273-1177(02)00594-XSearch in Google Scholar

[138] E.T. Young, J.T. Davis, C.L. Thompson, G.H. Rieke, G. Rivlis, R. Schnurr, J. Cadien, L. Davidson, G.S. Winters, and K.A. Kormos, “Far-infrared imaging array for SIRTF”, Proc. SPIE 3354, 57–65 (1998). http://dx.doi.org/10.1117/12.31731510.1117/12.317315Search in Google Scholar

[139] A. Poglitsch, C. Waelkens, O.H. Bauer, J. Cepa, H. Feuchtgruber, T. Henning, C. van Hoof, F. Kerschbaum, O. Krause, E. Renotte, L. Rodriguez, P. Saracenoi, and B. Vandenbussche, “The photodetector array camera and spectrometer (PACS) for the Herschel Space Laboratory”, Proc. SPIE 7010, 701005 (2008). http://dx.doi.org/10.1117/12.79001610.1117/12.790016Search in Google Scholar

[140] http://fifi-ls.mpg-garching.mpg.dr/detector.html Search in Google Scholar

[141] http://pacs.mpe.mpg.de/p15n.html Search in Google Scholar

[142] N. Billot, P. Agnese, J.L. Augueres, A. Beguin, and A. Bouere, O. Boulade, C. Cara, C. Cloue, E. Doumayrou, L. Duband, B. Horeau, I. Le Mer, J.L. Pennec, J. Martignac, K. Okumura, V. Reveret, M. Sauvage, F. Simoens, and L. Vigroux, “The Herschel/PACS 2560 bolometers imaging camera”, Proc. SPIE 6265, 62650D (2006). http://dx.doi.org/10.1117/12.67115410.1117/12.671154Search in Google Scholar

[143] M. Shirahata, S. Matsuura, T. Nakagawa, T. Wada, S. Kamiya, M. Kawada, Y. Sawayama, Y. Doi, H. Kawada, Y. Creten, B. Okcan, W. Raab, and A. Poglitsh, “Development of a far-infrared Ge:Ga monolithic array detector for SPICA a possible application to SPICA”, Proc. SPIE 7741, 77410B (2010). http://dx.doi.org/10.1117/12.85777210.1117/12.857772Search in Google Scholar

[144] J. Farhoomand, D.L. Sisson, and J.W. Beeman, “Viability of layered-hybrid architecture for far IR focal-plane arrays”, Infrared Phys.Techn. 51, 152–159 (2008). http://dx.doi.org/10.1016/j.infrared.2007.07.00410.1016/j.infrared.2007.07.004Search in Google Scholar

[145] M. Ressler, H. Hogue, M. Muzilla, J. Blacksberg, J. Beeman, E. Haller, J. Huffman, J. Farhoomand, and E. Young “Development of large format far-infrared detectors”, Astro2010: The Astronomy and Astrophysics Decadal Survey, Technology Development Papers, no. 18. Search in Google Scholar

[146] H.H. Houge, M.G. Mlynczak, M.N. Abedin, S.A. Masterjohn, and J.E. Huffman, “Far-infrared detector development for space-based Earth observation”, Proc. SPIE 7082, 70820E-1–8 (2008). 10.1117/12.797078Search in Google Scholar

[147] J. Bandaru, J.W. Beeman, and E.E. Haller, “Growth and performance of Ge:Sb blocked impurity band (BIB) detectors”, Proc. SPIE 4486, 193–199 (2002). http://dx.doi.org/10.1117/12.45510610.1117/12.455106Search in Google Scholar

[148] L.A. Reichertz, J.W. Beeman, B.L. Cardozo, G. Jakob, R. Katterloher, N.M. Haegel, and E.E. Haller, “Development of a GaAs-based BIB detector for sub-mm wavelengths”, Proc. SPIE 6275, 62751S (2006). http://dx.doi.org/10.1117/12.67303910.1117/12.673039Search in Google Scholar

[149] D.R. Khokhlov, I.I. Ivanchik, S.N. Raines, D.M. Watson, and J.L. Pipher, “Performance and spectral response of Pb1−xSnxTe(In) far-infrared photodetectors”, Appl. Phys. Lett. 76, 2835–2837 (2000). http://dx.doi.org/10.1063/1.12648910.1063/1.126489Search in Google Scholar

[150] K.G. Kristovskii, A.E. Kozhanov, D.E. Dolzhenko, I.I. Ivanchik, D. Watson, and D.R. Khokhlov, “Photoconductivity of lead telluride-based doped alloys in the submillimeter wavelength range”, Phys. Solid State 46, 122–124 (2004). http://dx.doi.org/10.1134/1.164193710.1134/1.1641937Search in Google Scholar

[151] A.N. Akimov, V.G. Erkov, V.V. Kubarev, E.L. Molodtsova, A.E. Klimov, and V.N. Shumskyi, “Photosensitivity of Pb1−x SnxTe:In films in the terahertz region of the spectrum”, Semiconductors 40, 164–168 (2006). http://dx.doi.org/10.1134/S106378260602009610.1134/S1063782606020096Search in Google Scholar

[152] A. Artamkin, A. Nikorici, L. Ryabova, V. Shklover, and D. Khokhlov, “Continuous focal plane array for detection of terahertz radiation”, Proc. SPIE 6297, 62970B (2006). http://dx.doi.org/10.1117/12.68076310.1117/12.680763Search in Google Scholar

[153] A.N. Akimov, A.E. Klimov, I.G. Neizvestny, V.N. Shumsky, V.V. Kubarev, O.V. Smolin, and E.V. Susov, “Sensitivity of Pb1–xSnxTe films in submillimeter spectral range”, Prikladnaya Fizika 6, 12–17 (2007). (in Russian). Search in Google Scholar

[154] A. Klimov, V. Shumsky, and V. Kubarev, “Terahertz sensitivity of Pb1—xSnxTe:In”, Ferroelectrics 347, 111–119 (2007). http://dx.doi.org/10.1080/0015019060118725210.1080/00150190601187252Search in Google Scholar

[155] A.G. Milnes, Deep Impurities in Semiconductors, Wiley Interscience, New York, 1973. Search in Google Scholar

[156] B.A. Volkov, L.I. Ryabova, and D.R. Khokhlov, “Mixed-valence impurities in lead telluride-based solid solutions”, Phys.-Usp. 45, 819–846 (2002). http://dx.doi.org/10.1070/PU2002v045n08ABEH00114610.1070/PU2002v045n08ABEH001146Search in Google Scholar

[157] Yu.G. Troyan, F.F. Sizov, and V.M. Lakeenkov, “Relaxation time and current instabilities in highly resistive PbTe:Ga single crystals”, Ukr. J. Phys. 32, 467–471 (1987). Search in Google Scholar

[158] C. Wilson, L. Frunzio, and D. Prober, “Time-resolved measurements of thermodynamic fluctuations of the particle number in a nondegenerate Fermi gas”, Phys. Rev. Lett. 87, 067004 (2001). Search in Google Scholar

[159] C.A. Mears, Q. Hu, P.L. Richards, A.H. Worsham, D.E. Prober, and A.V. Raisanen, “Quantum limited heterodyne detection of millimeter waves using super conducting tantalum tunnel junctions”, Appl. Phys. Lett. 57, 2487–2489 (1990). http://dx.doi.org/10.1063/1.10411110.1063/1.104111Search in Google Scholar

[160] E. Burstein, D.N. Langenberg, and B.N. Taylor, “Superconductors as quantum detectors for microwave and sub-millimeter radiation”, Phys. Rev. Lett. 6, 92–94 (1961). http://dx.doi.org/10.1103/PhysRevLett.6.9210.1103/PhysRevLett.6.92Search in Google Scholar

[161] A.H. Dayem and R.J. Martin, “Quantum interaction of microwave radiation with tunnelling between superconductors”, Phys. Rev. Lett. 8, 246–248 (1962). http://dx.doi.org/10.1103/PhysRevLett.8.24610.1103/PhysRevLett.8.246Search in Google Scholar

[162] P.K. Tien and J.P. Gordon, “Multiphoton process observed in the interaction of microwave fields with the tunnelling between superconductor films”, Phys. Rev. 129, 647–651 (1963). http://dx.doi.org/10.1103/PhysRev.129.64710.1103/PhysRev.129.647Search in Google Scholar

[163] P.L. Richards, T.M. Shen, R.E. Harris, and F.L. Lloyd, “Quasiparticle heterodyne mixing in SIS tunnel junctions”, Appl. Phys. Lett. 34, 345–347 (1979). http://dx.doi.org/10.1063/1.9078210.1063/1.90782Search in Google Scholar

[164] G.J. Dolan, T.G. Phillips, and D.P. Woody, “Low-noise 115; GHz mixing in superconducting oxide-barrier tunnel junctions”, Appl. Phys. Lett. 34, 347–349 (1979). http://dx.doi.org/10.1063/1.9078310.1063/1.90783Search in Google Scholar

[165] J.R. Tucker and M.J. Feldman, “Quantum detection at millimeter wavelength”, Rev. Mod. Phys. 57, 1055–1113 (1985). http://dx.doi.org/10.1103/RevModPhys.57.105510.1103/RevModPhys.57.1055Search in Google Scholar

[166] C.A. Mears, Q. Hu, P.L. Richards, A.H. Worsham, D.E. Prober, and A.V. Raisanen, “Quantum limited heterodyne detection of millimeter waves using super conducting tantalum tunnel junctions”, Appl. Phys. Lett. 57, 2487–2489 (1990). http://dx.doi.org/10.1063/1.10411110.1063/1.104111Search in Google Scholar

[167] V.P. Koshelets, S.V. Shitov, L.V. Filippenko, P.N. Dmitriev, A.N. Ermakov, A.S. Sobolev, and M.Yu. Torgashin, “Integrated superconducting sub-mm wave receivers”, Radiophys. Quant. Electr. 46, 618–630 (2003). http://dx.doi.org/10.1023/B:RAQE.0000024992.02488.9310.1023/B:RAQE.0000024992.02488.93Search in Google Scholar

[168] A. Karpov, D. Miller, F. Rice, J.A. Stern, B. Bumble, H.G. LeDuc, and J. Zmuidzinas, “Low noise SIS mixer for far infrared radio astronomy”, Proc. SPIE 5498, 616–621 (2004). http://dx.doi.org/10.1117/12.55319010.1117/12.553190Search in Google Scholar

[169] G. Chattopadhyay, “Future of heterodyne receivers at submillimeter wavelengths”, Digest IRMMW-THz-2005 Conf., 461–462 (2005). Search in Google Scholar

[170] G.N. Gol’tsman, “Hot electron bolometric mixers: new terahertz technology”, Infrared Phys. Techn. 40, 199–206 (1999). http://dx.doi.org/10.1016/S1350-4495(99)00011-010.1016/S1350-4495(99)00011-0Search in Google Scholar

[171] R. Blundell and K.H. Gundlach, “A quasioptical SIN mixer for 230 GHz frequency range”, Int. J. Infrared Milli. 8, 1573–1579 (1987). http://dx.doi.org/10.1007/BF0101244310.1007/BF01012443Search in Google Scholar

[172] M. Nahum, P.L. Richards, and C.A. Mears, “Design analysis of a novel hot-electron microbolometer”, IEEE T. Appl. Supercon. 3, 2124–2127 (1993). http://dx.doi.org/10.1109/77.23392110.1109/77.233921Search in Google Scholar

[173] M. Nahum and J. Martinis, “Ultrasensitive hot-electron microbolometer”, Appl. Phys. Lett. 63, 3075–3077 (1993). http://dx.doi.org/10.1063/1.11023710.1063/1.110237Search in Google Scholar

[174] D. Chouvaev, D. Sandgren, M. Tarasov, and L. Kuzmin, “Optical qualification of the normal metal hot-electron microbolometer (NHEB),” 12 thInt. Symp. Space THz Technol., San Diego, 446–456 (2001). Search in Google Scholar

[175] D. Sandgren, D. Chouvaev, M. Tarasov, and L. Kuzmin, “Fabrication and optical characterization of the normal metal hot-electron microbolometer with Andreev mirrors”, Physica C372, 444–447 (2002). 10.1016/S0921-4534(02)00719-0Search in Google Scholar

[176] D. Golubev and L. Kuzmin, “Nonequilibrium theory of a hot-electron bolometer with normal metal-insulator-superconductor tunnel junction”, J. Appl. Phys. 89, 6464–6472 (2001). http://dx.doi.org/10.1063/1.135100210.1063/1.1351002Search in Google Scholar

[177] D.R. Schmidt, K.W. Lehnert, A.M. Clark, W.D. Duncan, K.D. Irwin, N. Miller, and J.N. Ullom, “A superconductor-insulator-normal metal bolometer with microwave readout suitable for large-format arrays”, Appl. Phys. Lett. 86, 053505 (2005). Search in Google Scholar

[178] P. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, and J. Zmuidzinas, “A broadband superconducting detector suitable for use in large arrays”, Nature 425, 817–821 (2003). http://dx.doi.org/10.1038/nature0203710.1038/nature02037Search in Google Scholar PubMed

[179] P.R. Maloney, N.G. Czakon, P.K. Day, R. Duan, J. Gao, J. Glenn, S. Golwala, M. Hollister, H.G. LeDuc, B. Mazin, O. Noroozian, H.T. Nguyen, J. Sayers, J. Schlaerth, J.E. Vaillancourt, A. Vayonakis, P. Wilson, and J. Zmuidzinas, “The MKID camera”, AIP Conf. Proc. 1185, 176–179 (2009). http://dx.doi.org/10.1063/1.329230910.1063/1.3292309Search in Google Scholar

[180] SELEX GALILEO; http://www.selex-sas.com/EN/Common/files/SELEX_Galileo/Products/DLATGS_dsh.pdf. Search in Google Scholar

[181] D. Dooley, “Sensitivity of broadband pyroelectric terahertz detectors continues to improve”, Laser Focus World. May 2010. Search in Google Scholar

[182] http://www.spectrumdetector.com/pdf/datasheets/THZ.pdf Search in Google Scholar

[183] A.L. Woodcraft, R.V. Sudiwal, E. Wakui, and C. Paine, “Hopping conduction in NTD germanium: comparison between measurement and theory”, J. Low Temp. Phys. 134, 925–944 (2004). http://dx.doi.org/10.1023/B:JOLT.0000013209.08494.0110.1023/B:JOLT.0000013209.08494.01Search in Google Scholar

[184] Herschel Space Observatory, http://herschel.jpl.nasa.gov/spireInstrument.shtml Search in Google Scholar

[185] P. Agnese, C. Buzzi, P. Rey, L. Rodriguez, and J.L. Tissot, “New technological development for far-infrared bolometer arrays”, Proc. SPIE 3698, 284–290 (1999). http://dx.doi.org/10.1117/12.35453010.1117/12.354530Search in Google Scholar

[186] C. Dowell, C.A. Allen, S. Babu, M.M. Freund, M.B. Gardnera, J. Groseth, M. Jhabvala, A. Kovacs, D.C. Lis, S.H. Moseley, T.G. Phillips, R. Silverberg, G. Voellmer, and H. Yoshida, “SHARC II: a Caltech Submillimeter Observatory facility camera with 384 pixels”, Proc. SPIE 4855, 73–87 (2003). http://dx.doi.org/10.1117/12.45936010.1117/12.459360Search in Google Scholar

[187] http://herschel.esac.esa.int/science_instruments.shtml Search in Google Scholar

[188] G.H. Rieke, “Infrared detector arrays for astronomy”, Annu. Rev. Astrophys. 45, 77–115 (2007). http://dx.doi.org/10.1146/annurev.astro.44.051905.09243610.1146/annurev.astro.44.051905.092436Search in Google Scholar

[189] E.M. Conwell, “High field transport in semiconductors”, Solid State Physics, Suppl. 9, Academic Press, New York, 1967. Search in Google Scholar

[190] T.G. Phillips and K.B. Jefferts, “A low temperature bolometer heterodyne receiver for millimeter wave astronomy”, Rev. Sci. Instrum. 44, 1009–1014 (1973). http://dx.doi.org/10.1063/1.168628810.1063/1.1686288Search in Google Scholar

[191] E.H. Putley, “InSb submilimeter photoconductive detectors”, in Semiconductors and Semimetals, Vol. 12, pp. 143–167, edited by R.K. Willardson and A.C. Beer, Academic Press, New York, 1977. 10.1016/S0080-8784(08)60148-9Search in Google Scholar

[192] http://www.infraredlaboratories.com/InSb_Hot_e_Bolometers.html Search in Google Scholar

[193] P.R. Norton, “Photodetectors”, in Handbook of Optics, Vol. I, chapter 24, edited by M. Bass, McGraw Hill, New York, 2010. Search in Google Scholar

[194] K.S. Yngvesson, J.-X. Yang, F. Agahi, D. Dai, C. Musante, W. Grammer, and K.M. Lau, “AlGaAs/GaAs quasi-bulk effect mixers: Analysis and experiments”, Third Int. Symp. Space THz Techn. 688–705 (1992). Search in Google Scholar

[195] Yu.B. Vasilyev, A.A. Usikova, N.D. Il’inskaya, P.V. Petrov, and Yu.L. Ivanov, “Highly sensitive submillimeter InSb photodetectors”, Semiconductors 42, 1234–1236 (2008). http://dx.doi.org/10.1134/S106378260810016310.1134/S1063782608100163Search in Google Scholar

[196] H. Moseley and D. McCammon, “High performance silicon hot electron bolometers”, Ninth Int. Workshop on Low Temperature Detectors, AIP Proc. 605, 103–106 (2002). Search in Google Scholar

[197] K. Seeger, Semiconductor Physics, Springer, Berlin, 1991. 10.1007/978-3-662-02663-2Search in Google Scholar

[198] S.M. Smith, M.J. Cronin, R.J. Nicholas, M.A. Brummell, J.J. Harris, and C.T. Foxon, “Millimeter and submillimeter detection using Ga1−xAlxAs/GaAs heterosructures”, Int. J. Infrared Milli. 8, 793–802 (1987). http://dx.doi.org/10.1007/BF0101072110.1007/BF01010721Search in Google Scholar

[199] J.-X. Yang, F. Agahi, D. Dai, C.F. Musante, W. Grammer, K.M. Lau, and K.S. Yngvesson, “Wide-bandwidth electron bolometric mixers: a 2DEG prototype and potential for low-noise THz receivers”, IEEE T. Microw. Theory 41, 581–589 (1993). http://dx.doi.org/10.1109/22.23164910.1109/22.231649Search in Google Scholar

[200] G.N. Gol’tsman and K.V. Smirnov, “Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures”, JETP Lett. 74, 474–479 (2001). http://dx.doi.org/10.1134/1.143429010.1134/1.1434290Search in Google Scholar

[201] A.A. Verevkin, N.G. Ptitsina, K.V. Smirnov, G.N. Gol’tsman, E.M. Gershenzon, and K.S. Ingvesson, “Direct measurements of energy relaxation times on an AlGaAs/GaAs heterointerface in the range 4.2–50 K”, JETP Lett. 64, 404–409 (1996). http://dx.doi.org/10.1134/1.56721110.1134/1.567211Search in Google Scholar

[202] T. Phillips and D. Woody, “Millimeter-wave and submillimeter-wave receivers”, Annu. Rev. Astron. Astr. 20, 285–321 (1982). http://dx.doi.org/10.1146/annurev.aa.20.090182.00144110.1146/annurev.aa.20.090182.001441Search in Google Scholar

[203] E.M. Gershenzon, G.N. Gol’tsman, I.G. Gogdize, Y.P. Gusev, A.J. Elant’ev, B.S. Karasik, and A.D. Semenov, “Millimeter and submillimeter range mixer based on electronic heating of superconducting films in the resistive state”, Superconductivity 3, 1582–1597 (1990). Search in Google Scholar

[204] B. Karasik, G.N. Gol’tsman, B.M. Voronov, S.I. Svechnikov, E.M. Gershenzon, H. Ekström, S. Jacobsson, E. Kollberg, and K.S. Yngvesson, “Hot electron quasioptical NbN superconducting mixer”, IEEE T. Appl. Supercon. 5, 2232–2235 (1995). http://dx.doi.org/10.1109/77.40302910.1109/77.403029Search in Google Scholar

[205] D.E. Prober, “Superconducting terahertz mixer using a transition-edge microbolometer”, Appl. Phys. Lett. 62, 2119–2121 (1993). http://dx.doi.org/10.1063/1.10944510.1063/1.109445Search in Google Scholar

[206] A. Skalare, W.R. McGrath, B. Bumble, H.G. LeDuc, P.J. Burke, A.A. Vereijen, R.J. Schoelkopf, and D.E. Prober, “Large bandwidth and low noise in a diffusion-cooled hot-electron bolometer mixer”, Appl. Phys. Lett. 68, 1558–1560 (1996). http://dx.doi.org/10.1063/1.11569810.1063/1.115698Search in Google Scholar

[207] W.R. McGrath, “Novel hot-electron bolometer mixers for submillimeter applications: An overview of recent developments”, Proc. URSI Int. Symp. on Signals, Systems, and Electronics, 147–152 (1995). http://dx.doi.org/10.1109/ISSSE.1995.49795510.1109/ISSSE.1995.497955Search in Google Scholar

[208] P.J. Burke, R.J. Schoelkopf, D.E. Prober, A. Skalare, W.R. McGrath, B. Bumble, and H.G. LeDuc, “Length scaling of bandwidth and noise in hot-electron superconducting mixers”, Appl. Phys. Lett. 68, 3344–3346 (1996). http://dx.doi.org/10.1063/1.11605210.1063/1.116052Search in Google Scholar

[209] A.D. Semenov, G.N. Gol’tsman, and R. Sobolewski, “Hot-electron effect in semiconductors and its applications for radiation sensors”, Semicond. Sci. Tech. 15, R1–R16 (2002). 10.1088/0953-2048/15/4/201Search in Google Scholar

[210] E.M. Gershenson, M.E. Gershenson, G.N. Goltsman, B.S. Karasik, A.M. Lyul’kin, and A.D. Semenov, “Ultra-fast superconducting electron bolometer”, J. Tech. Phys. Lett. 15, 118–119 (1989). Search in Google Scholar

[211] K.S. Il’in, M. Lindgren, M. Currie, A.D. Semenov, G.N. Gol’tsman, R. Sobolewski, S.I. Cherednichenko, and E.M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors”, Appl. Phys. Lett. 76, 2752–2754 (2000). http://dx.doi.org/10.1063/1.12648010.1063/1.126480Search in Google Scholar

[212] Y. Gousev, G. Gol’tsman, A. Semenov, E. Gershenzon, R. Nebosis, M. Heusinger, and K. Renk, “Broad-band ultrafast superconducting NbN detector for electromagnetic-radiation”, J. Appl. Phys. 75, 3695–3697 (1994). http://dx.doi.org/10.1063/1.35606010.1063/1.356060Search in Google Scholar

[213] J. J. A. Baselmans, A. Baryshev, S. F. Reker, M. Hajenius, J. Gao, T. Klapwijk, B. Voronov, and G. Gol’tsman, “Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers”, J. Appl. Phys. 100, 184103 (2006). http://dx.doi.org/10.1063/1.223480210.1063/1.2234802Search in Google Scholar

[214] W.J. Skocpol, M.R. Beasly, and M. Tinkham, “Self-heating hotspots in superconducting thin-film microbridges”, J. Appl. Phys. 45, 4054–4066 (1974). http://dx.doi.org/10.1063/1.166391210.1063/1.1663912Search in Google Scholar

[215] A.D. Semenov and H.-W. Hübers, “Frequency bandwidth of a hot-electron mixer according to the hot-spot model”, IEEE T. Appl. Supercon. 11, 196–199 (2001). http://dx.doi.org/10.1109/77.91931810.1109/77.919318Search in Google Scholar

[216] http://www.sron.nl/index.php?option=com_content&task=view&id=44&Itemid=111 Search in Google Scholar

[217] S.E. Schwarz and B.T. Ulrich, “Antenna-coupled infrared detectors”, J. Appl. Phys. 85, 1870–1873 (1977). http://dx.doi.org/10.1063/1.32394010.1063/1.323940Search in Google Scholar

[218] A. Balanis, Antenna Theory: Analysis and Design, 3rd edition, Wiley & Sons, New York 2005. Search in Google Scholar

[219] J. Volakis, Antenna Engineering Handbook, 4th edition, McGraw-Hill, New York, 2007. Search in Google Scholar

[220] A.J. Kreisler and A. Gaugue, “Recent progress in HTSC bolometric detectors at terahertz frequencies”, Proc. SPIE 3481, 457–468 (1998). http://dx.doi.org/10.1117/12.33589910.1117/12.335899Search in Google Scholar

[221] G.N. Gol’tsman, Yu.B. Vachtomin, S.V. Antipov, M.I. Finkel, S.N. Maslennikiv, K.V. Smirnov, S.L. Poluakov, S.I. Svechnikov, N.S. Kaurova, E.V. Grishina, and B.M. Voronov, “NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers”, Proc. SPIE 5727, 95–106 (2005). http://dx.doi.org/10.1117/12.59049010.1117/12.590490Search in Google Scholar

[222] D. Rutledge and M. Muha, “Imaging antenna arrays”, IEEE T. Antennas Propagat. AP-30, 535–540 (1982). http://dx.doi.org/10.1109/TAP.1982.114285610.1109/TAP.1982.1142856Search in Google Scholar

[223] A.J. Kreisler and A. Gaugue, “Recent progress in high-temperature superconductor bolometric detectors: from the mid-infrared to the far-infrared (THz) range”, Supercond. Sci. Tech. 13, 1235–1245 (2000). http://dx.doi.org/10.1088/0953-2048/13/8/32110.1088/0953-2048/13/8/321Search in Google Scholar

[224] O. Harnack, B. Karasik, W. McGrath, A. Kleinsasser, and J. Barner, “Submicron-long HTS hot-electron mixers”, Supercond. Sci. Tech. 12, 850–852 (1999). http://dx.doi.org/10.1088/0953-2048/12/11/34710.1088/0953-2048/12/11/347Search in Google Scholar

[225] B. Karasik, W. McGrath, and M. Gaidis, “Analysis of a high-Tc hot-electron mixer for terahertz applications”, J. Appl. Phys. 81, 1581–1589 (1997). http://dx.doi.org/10.1063/1.36554410.1063/1.365544Search in Google Scholar

[226] F. Ronnung, S. Cherednichenko, G. Gol’tsman, E. Gershen- zon, and D. Winkler, “A nanoscale YBCO mixer optically coupled with a bow tie antenna”, Supercond. Sci. Tech. 12, 853–855 (1999). http://dx.doi.org/10.1088/0953-2048/12/11/34810.1088/0953-2048/12/11/348Search in Google Scholar

[227] M. Lindgren, M. Currie, C. Williams, T.Y. Hsiang, P.M. Fauchet, R. Sobolewsky, S.H. Moffat, R.A. Hughes, J.S. Preston, and F.A. Hegmann, “Intrinsic picosecond response times of Y-Ba-Cu-O superconducting photoresponse”, Appl. Phys. Lett. 74, 853–855 (1999). http://dx.doi.org/10.1063/1.12338810.1063/1.123388Search in Google Scholar

[228] V.V. Shirotov and Yu.Ya. Divin, “Frequency-selective Josephson detector: Power dynamic range at subterahertz frequencies”, Techn. Phys. Lett. 30, 522–524 (2004). http://dx.doi.org/10.1134/1.177335610.1134/1.1773356Search in Google Scholar

[229] M.V. Lyatti, D.A. Tkachev, and Yu.Ya. Divin, “Signal and noise characteristics of a terahertz frequency-selective YBa2Cu3O7− Josephson detector”, Techn. Phys. Lett. 32, 860–862 (2006). http://dx.doi.org/10.1134/S106378500610013010.1134/S1063785006100130Search in Google Scholar

[230] D.J. Benford and S.H. Moseley, “Superconducting transition edge sensor bolometer arrays for submillimeter astronomy”, Proc. Int. Symp. on Space and THz Technology, www.eecs.umich.edu/~jeast/benford_2000_4_1.pdf Search in Google Scholar

[231] D. Olaya, J. Wei, S. Pereverzev, B.S. Karasik, J.H. Kawamura, W.R. McGrath, A.V. Sergeev, and M.E. Gershenson, “An untrasensitive hot-electron bolometer for low-background SMM applications”, Proc. SPIE 6275, 627506 (2006). http://dx.doi.org/10.1117/12.67230310.1117/12.672303Search in Google Scholar

[232] K. Irwin, “An application of electrothermal feedback for high-resolution cryogenic particle-detection”, Appl. Phys. Lett. 66, 1998–2000 (1995). http://dx.doi.org/10.1063/1.11367410.1063/1.113674Search in Google Scholar

[233] K. Irwin, G. Hilton, D. Wollman, and J. Martinis, “X-ray detection using a superconducting transition-edge sensor microcalorimeter with electrothermal feedback”, Appl. Phys. Lett. 69, 1945–1947 (1996). http://dx.doi.org/10.1063/1.11763010.1063/1.117630Search in Google Scholar

[234] A.T. Lee. P.L. Richards, S.W. Nam, B. Cabrera, and K.D. Irwin, “A superconducting bolometer with strong electrothermal feedback”, Appl. Phys. Lett. 69, 1801–1803 (1996). http://dx.doi.org/10.1063/1.11749110.1063/1.117491Search in Google Scholar

[235] G.C. Hilton, J.M. Martinis, K.D. Irwin, N.F. Bergren, D.A. Wollman, M.E. Huber, S. Deiker, and S.W. Nam, “Microfabricated transition-edge X-ray detectors”, IEEE T. Appl. Supercon. 11, 739–742 (2001). http://dx.doi.org/10.1109/77.91945110.1109/77.919451Search in Google Scholar

[236] B. Cabrera, R. Clarke, P. Colling, A. Miller, S. Nam, and R. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors”, Appl. Phys. Lett. 73, 735–737 (1998). http://dx.doi.org/10.1063/1.12198410.1063/1.121984Search in Google Scholar

[237] W. Duncan, W.S. Holland, M.D. Audley, M. Cliffe, T. Hodson, B.D. Kelly, X. Gao, D.C. Gostick, M. MacIntosh, H. McGregor, T. Peacocke, K.D. Irwin, G.C. Hilton, S.W. Deiker, J. Beier, C.D. Reintsema, A.J. Walton, W. Parkes, T. Stevenson, A.M. Gundlach, C. Dunare, and P.A.R. Ade, “SCUBA-2: Developing the detectors”, Proc. SPIE 4855, 19–29 (2003). http://dx.doi.org/10.1117/12.45910710.1117/12.459107Search in Google Scholar

[238] A.J. Walton, W. Parkes, J.G. Terry, C. Dunare, J.T.M. Stevenson, A.M. Gundlach, G.C. Hilton, K.D. Irwin, J.N. Ullom, W.S. Holland, W. Duncan, M.D. Audley, P.A.R. Ade, R.V. Sudiwala, and E. Schulte, “Design and fabrication of the detector technology for SCUBA-2”, IEE Proc.-A 151, 119–120 (2004). Search in Google Scholar

[239] A.-D. Brown, D. Chuss, V. Mikula, R. Henry, E. Wollack, Y. Zhao, G.C. Hilton, and J.A. Chervenak, “Auxiliary components for kilopixel transition edge sensor arrays”, Solid State Electron. 52, 1619–1624 (2008). http://dx.doi.org/10.1016/j.sse.2008.06.01810.1016/j.sse.2008.06.018Search in Google Scholar

[240] S. Lee, J. Gildemeister, W. Holmes, A. Lee, and P. Richards, “Voltage-biased superconducting transition-edge bolometer with strong electrothermal feedback operated at 370 mK”, Appl. Opt. 37, 3391–3397 (1998). http://dx.doi.org/10.1364/AO.37.00339110.1364/AO.37.003391Search in Google Scholar

[241] H.F.C. Hoevers, A.C. Bento, M.P. Bruijn, L. Gottardi, M.A.N. Korevaar, W.A. Mels, and P.A.J. de Korte, “Thermal fluctuation noise in a voltage biased superconducting transition edge thermometer”, Appl. Phys. Lett. 77, 4422–4424 (2000). http://dx.doi.org/10.1063/1.133655010.1063/1.1336550Search in Google Scholar

[242] M.D. Audley, D.M. Glowacka, D.J. Goldie, A.N. Lasenby, V.N. Tsaneva, S. Withington, P.K. Grimes, C.E. North, G. Yassin, L. Piccirillo, G. Pisano, P.A.R. Ade, G. Teleberg, K.D. Irwin, W.D. Duncan, C.D. Reintsema, M. Halpern, and E.S. Battistellik, “Tests of finline-coupled TES bolometers for COVER”, Digest IRMMW-THz-2007 Conf., 180–181, Cardiff, 2007. 10.1109/ICIMW.2007.4516449Search in Google Scholar

[243] J.A. Chervenak, K.D. Irwin, E.N. Grossman, J.M. Martinis, C.D. Reintsema, and M.E. Huber, “Superconducting multiplexer for arrays of transition edge sensors”, Appl. Phys. Lett. 74, 4043–4045 (1999). http://dx.doi.org/10.1063/1.12325510.1063/1.123255Search in Google Scholar

[244] P.J. Yoon, J. Clarke, J.M. Gildemeister, A.T. Lee, M.J. Myers, P.L. Richards, and J.T. Skidmore, “Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors”, Appl. Phys. Lett. 78, 371–373 (2001). http://dx.doi.org/10.1063/1.133896310.1063/1.1338963Search in Google Scholar

[245] The SQUID Handbook, Vol. II: Applications, edited by J. Clarke and A.I. Braginski, Wiley-VCH, Weinheim, 2006. Search in Google Scholar

[246] K.D. Irvin, “SQUID multiplexers for transition-edge sensors”, Physica C 368, 203–210 (2002). http://dx.doi.org/10.1016/S0921-4534(01)01167-410.1016/S0921-4534(01)01167-4Search in Google Scholar

[247] K.D. Irwin, M.D. Audley, J.A. Beall, J. Beyer, S. Deiker, W. Doriese, W.D. Duncan, G.C. Hilton, W.S. Holland, C.D. Reintsema, J.N. Ullom, L.R. Vale, and Y. Xu, “In-focal-plane SQUID multiplexer”, Nuclear Inst. Methods Phys. Research A520, 544–547 (2004). http://dx.doi.org/10.1016/j.nima.2003.11.31010.1016/j.nima.2003.11.310Search in Google Scholar

[248] K.D. Irvin and G.C. Hilton, “Transition-edge sensors”, in Cryogenic Particle Detection, pp. 63–149, edited by C. Enss, Springer-Verlag, Berlin, 2005. 10.1007/10933596_3Search in Google Scholar

[249] T.M. Lanting, H.M. Cho, J. Clarke, W.L. Holzapfel, A.T. Lee, M. Lueker, P.L. Richards, M.A. Dobbs, H. Spieler, and A. Smith, “Frequency-domain multiplexed readout of transition-edge sensor arrays with a superconducting quantum interference device”, Appl. Phys. Lett. 86, 112511 (2005). http://dx.doi.org/10.1063/1.188474610.1063/1.1884746Search in Google Scholar

[250] W.S. Holland, W. Duncan, B.D. Kelly, K.D. Irwin, A.J. Walton, P.A.R. Ade, and E. I. Robson, “SCUBA-2: A new generation submillimeter imager for the James Clerk Maxwell Telescope”, Proc. SPIE 4855, 1–18 (2003). http://dx.doi.org/10.1117/12.45915210.1117/12.459152Search in Google Scholar

[251] A.L. Woodcraft, M.I. Hollister, D. Bintley, M.A. Ellis, X. Gao, W.S. Holland, M.J. MacIntosh, P.A.R. Ade, J.S. House, C.L. Hunt, and R.V. Sudiwala, “Characterization of a prototype SCUBA-2 1280-pixel submillimetre superconducting bolometer array”, Proc. SPIE 6275, 62751F (2006). http://dx.doi.org/10.1117/12.67131010.1117/12.671310Search in Google Scholar

[252] “SCUBA-2,” http://www.roe.ac.uk/ukatc/projects/scubatwo/ Search in Google Scholar

[253] D.J. Benford, J.G. Steguhn, T.J. Ames, C.A. Allen, J.A. Chervenak, C.R. Kennedy, S. Lefranc, S.F. Maher, S.H. Moseley, F. Pajot, C. Rioux, R.A. Shafer, and G.M. Voellmer, “First astronomical images with a multiplexed superconducting bolometer array”, Proc. SPIE 6275, 62751C (2006). http://dx.doi.org/10.1117/12.67236510.1117/12.672365Search in Google Scholar

[254] J. Gildemeister, A. Lee, and P. Richards, “Monolithic arrays of absorber-coupled voltagebiased superconducting bolometers”, Appl. Phys. Lett. 77, 4040–4042 (2000). http://dx.doi.org/10.1063/1.132684410.1063/1.1326844Search in Google Scholar

[255] D.J. Benford, G.M. Voellmer, J.A. Chervenak, K.D. Irwin, S.H. Moseley, R.A. Shafer, G.J. Stacey, and J.G. Staguhn, “Thousand-element multiplexed superconducting bolometer arrays”, in Proc. Far-IR, Sub-MM, and MM Detector Workshop, Vol. NASA/CP-2003-211 408, pp. 272–275, edited by J. Wolf, J. Farhoomand, and C.R. McCreight, 2003. Search in Google Scholar

[256] J. Gildemeister, A. Lee, and P. Richards, “A fully lithographed voltage-biased superconducting spiderweb bolometer”, Appl. Phys. Lett. 74, 868–870 (1999). http://dx.doi.org/10.1063/1.12339310.1063/1.123393Search in Google Scholar

[257] W. Knap, V. Kachorowskii, Y. Deng, S. Rumyantsev, J.-Q. Lu, R. Gaska, M.S. Shur, G. Simin, X. Hu, and M.A. Khan, C.A. Saylor, and L.C. Brunal, “Nonresonant detection of terahertz radiation in field effect transistors”, J. Appl. Phys. 91, 9346–9353 (2002). http://dx.doi.org/10.1063/1.146825710.1063/1.1468257Search in Google Scholar

[258] A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, “Resonant and voltage-tunable terahertz detection in InGaAs/InP nanometer transistors”, Appl. Phys. Lett. 89, 131926 (2006). http://dx.doi.org/10.1063/1.235881610.1063/1.2358816Search in Google Scholar

[259] Y.M. Meziani, J. Lusakowski, N. Dyakonova, W. Knap, D. Seliuta, E. Sirmulis, J. Deverson, G. Valusis, F. Boeuf, and T. Skotnicki, “Non resonant response to terahertz radiation by submicron CMOS transistors”, IEICE T. Electr. E89-C, 993–998 (2006). http://dx.doi.org/10.1093/ietele/e89-c.7.99310.1093/ietele/e89-c.7.993Search in Google Scholar

[260] G.C. Dyer, J.D. Crossno, G.R. Aizin, J. Mikalopas, E.A. Shaner, M.C. Wanke, J.L. Reno, and S.J. Allen, “A narrowband plasmonic terahertz detector with a monolithic hot electron bolometer”, Proc. SPIE 7215, 721503 (2009). http://dx.doi.org/10.1117/12.80961910.1117/12.809619Search in Google Scholar

[261] W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Łusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. El Fatimy, Y.M. Meziani, and T. Otsuji, “Field effect transistors for terahertz detection: physics and first imaging applications”, J. Infrared Millim. Te. 30, 1319–1337 (2009). Search in Google Scholar

[262] W. Knap, D. Coquillat, N. Dyakonova, F. Teppe, O. Klimenko, H. Videlier, S. Nadar, J. Łusakowski, G. Valusis, F. Schustera, B. Giffardd, T. Skotnickie, C. Gaquiere, and A. El Fatimy, “Plasma excitations in field effect transistors for terahertz detection and emission”, C.R. Phys. 11, 433–443 (2010). http://dx.doi.org/10.1016/j.crhy.2010.06.01010.1016/j.crhy.2010.06.010Search in Google Scholar

[263] W. Knap, F. Teppe, Y. Meziani, N. Dyakonova, J. Lusakowski, F. Boeuf, T. Skotnicki, D. Maude, S. Rumyantsev, and M.S. Shur, “Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors”, Appl. Phys. Lett. 85, 675–677 (2002). http://dx.doi.org/10.1063/1.177503410.1063/1.1775034Search in Google Scholar

[264] F. Teppe, M. Orlov, A. El Fatimy, A. Tiberj, W. Knap, J. Torres, V. Gavrilenko, A. Shchepetov, Y. Roelens, and S. Bollaert, “Room temperature tunable detection of subterahertz radiation by plasma waves in nanometer InGaAs transistors”, Appl. Phys. Lett. 89, 222109 (2006). http://dx.doi.org/10.1063/1.239299910.1063/1.2392999Search in Google Scholar

[265] R. Tauk, F. Teppe, S. Boubanga, D. Coquillat, W. Knap, Y.M. Meziani, C. Gallon, F. Boeuf, T. Skotnicki, and C. Fenouillet-Beranger, “Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power”, Appl. Phys. Lett. 89, 253511 (2006). http://dx.doi.org/10.1063/1.241021510.1063/1.2410215Search in Google Scholar

[266] V.I. Gavrilenko, E.V. Demidov, K.V. Marem’yanin, S.V. Morozov, W. Knap, and J. Lusakowski, “Electron transport and detection of terahertz radiation in a GaN/AlGaN submicrometer field-effect transistor”, Semiconductors 41, 232–234 (2007). http://dx.doi.org/10.1134/S106378260702022410.1134/S1063782607020224Search in Google Scholar

[267] Y.M. Meziani, M. Hanabe, A. Koizumi, T. Otsuji, and E. Sano, “Self oscillation of the plasma waves in a dual grating gates HEMT device”, Int. Conf. Indium Phosphide and Related Materials, Conf. Proceedings, 534–537, Matsue, 2007. 10.1109/ICIPRM.2007.381246Search in Google Scholar

[268] A.M. Hashim, S. Kasai, and H. Hasegawa, “Observation of first and third harmonic responses in two-dimensional AlGaAs/GaAs HEMT devices due to plasma wave interaction”, Superlattice Microst. 44, 754–760 (2008). http://dx.doi.org/10.1016/j.spmi.2008.08.00310.1016/j.spmi.2008.08.003Search in Google Scholar

[269] V. Ryzhii, A. Satou, I. Khmyrova, M. Ryzhii, T. Otsuji, V. Mitin, and M.S. Shur, “Plasma effects in lateral Schottky junction tunneling transit-time terahertz oscillator”, J. Phys.: Conf. Ser. 38, 228–233 (2006). http://dx.doi.org/10.1088/1742-6596/38/1/05510.1088/1742-6596/38/1/055Search in Google Scholar

[270] X.G. Peralta, S.J. Allen, M.C. Wanke, N.E. Harff, J.A. Simmons, M.P. Lilly, J.L. Reno, P.J. Burke, and J.P. Eisenstein, “Terahertz photoconductivity and plasmon modes in double-quantum-well field-effect transistors”, Appl. Phys. Lett. 81, 1627–1630 (2002). http://dx.doi.org/10.1063/1.149743310.1063/1.1497433Search in Google Scholar

[271] M. Dyakonov, and M.S. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by the dc current”, Phys. Rev. Lett. 71, 2465–2468 (1993). http://dx.doi.org/10.1103/PhysRevLett.71.246510.1103/PhysRevLett.71.2465Search in Google Scholar PubMed

[272] M. Dyakonov and M. Shur, “Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid”, IEEE T. Electron Dev. 43, 1640–1646 (1996). http://dx.doi.org/10.1109/16.53680910.1109/16.536809Search in Google Scholar

[273] M. Shur and V. Ryzhii, “Plasma wave electronics”, Int. J. High Speed Electr. Syst. 13, 575–600 (2003). http://dx.doi.org/10.1142/S012915640300183110.1142/S0129156403001831Search in Google Scholar

[274] A. Eguiluz, T.K. Lee, J.J. Quinn, and K.W. Chiu, “Interface excitations in metal-insulator-semiconductor structures”, Phys. Rev. B11, 4989–4993 (1975). 10.1103/PhysRevB.11.4989Search in Google Scholar

[275] S. Kang, P.J. Burke, L.N. Pfeifer, and K.W. West, “Resonant frequency response of plasma wave detector”, Appl. Phys. Lett. 89 213512 (2006). 10.1063/1.2393023Search in Google Scholar

[276] F. Teppe, A. El Fatimy, S. Boubanga, D. Seliuta, G. Valusis, B. Chenaud, and W. Knap, “Terahertz resonant detection by plasma waves in nanometric transistors”, Acta Phys. Pol. A113, 815–820 (2008). 10.12693/APhysPolA.113.815Search in Google Scholar

[277] D. Veksler, F. Teppe, A.P. Dmitriev, V.Yu. Kachorovskii, W. Knap, and M.S. Shur, “Detection of terahertz radiation in gated two-dimensional structures governed by dc current”, Phys. Rev. B73, 125328 (2006). 10.1103/PhysRevB.73.125328Search in Google Scholar

[278] E. Öjefors, A. Lisauskas, D. Glaab, H.G. Roskos, and U.R. Pfeiffer, lrdTerahertz imaging detectors in CMOS technology”, J. Infrared Millmi. Te. 30, 1269–1280 (2009). Search in Google Scholar

[279] E. Öjefors, U.R. Pfeiffer, A. Lisauskas, and H.G. Roskos, “A 0.65 THz focal-plane array in a quarter-micron CMOS process technology”, IEEE J. Solid-St. Circ. 44, 1968–1976 (2009). http://dx.doi.org/10.1109/JSSC.2009.202191110.1109/JSSC.2009.2021911Search in Google Scholar

[280] P.J. Burke, “Carbon nanotube devices for GHz to THz applications”, Proc. SPIE 5593, 52–61 (2004). http://dx.doi.org/10.1117/12.56815910.1117/12.568159Search in Google Scholar

[281] C.M. Sze. Physics of Semiconductor Devices, Wiley, New York, 1981. Search in Google Scholar

[282] V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A.A. Dubinom, and V.Ya. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures”, J. Appl. Phys. 106, 084507-1–6 (2009). http://dx.doi.org/10.1063/1.324754110.1063/1.3247541Search in Google Scholar

[283] V. Ryzhii, M. Ryzhii, V. Mitin, and T. Otsuji, “Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures”, J. Appl. Phys. 107, 054512-1–7 (2010). 10.1063/1.3327441Search in Google Scholar

[284] S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley, Berlin, 2004. 10.1002/9783527618040Search in Google Scholar

[285] Y. Kawano, T. Fuse, S. Toyokawa, T. Uchida, and K. Ishibashi, “Terahertz photon-assisted tunneling in carbon nanotube quantum dots”, J. Appl. Phys. 103, 034307 (2008). http://dx.doi.org/10.1063/1.283823710.1063/1.2838237Search in Google Scholar

[286] Y. Kawano, T. Uchida, and K. Ishibashi, “Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor”, Appl. Phys. Lett. 95, 083123-1–3 (2009). http://dx.doi.org/10.1063/1.320512510.1063/1.3205125Search in Google Scholar

[287] K.S. Yngvesson, K. Fu, B. Fu, R. Zannoni, J. Nicholson, S.H. Adams, A. Ouarraoui, J. Donovan and E. Polizzi, “Experimental detection of terahertz radiation in bundles of single wall carbon nanotubes”, Proc. 19th Int. Symp. Space THz Techn., Groningen, 304–313 (2008). 10.1109/ICIMW.2008.4665760Search in Google Scholar

[288] Y. Wang, K. Kempa, B. Kimball, J.B. Carlson, G. Benham, W.Z. Li, T. Kempa, J. Rybczynski, A. Herczynski, and Z.F. Ren, “Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes”, Appl. Phys. Lett. 85, 2607–2609 (2004). http://dx.doi.org/10.1063/1.179755910.1063/1.1797559Search in Google Scholar

[289] Y. Wang, Q. Wu, X. He, X. Sun, and T. Gui, “Radiation properties of carbon nanotubes antenna at terahertz/infrared range”, Int. J. Infrared Milli. 29, 35–42 (2008). http://dx.doi.org/10.1007/s10762-007-9306-910.1007/s10762-007-9306-9Search in Google Scholar

[290] O. Astavief, S. Komiyama, T. Kutsuwa, V. Antonov, Y. Kawaguchi, and K. Hirakawa, “Single-photon detector in the microwave range”, Appl. Phys. Lett. 80, 4250–4252 (2002). http://dx.doi.org/10.1063/1.148278710.1063/1.1482787Search in Google Scholar

[291] H. Hashiba, V. Antonov, L. Kulik, A. Tzalenchuk, P. Kleind- schmid, S. Giblin, and S. Komiyama, “Isolated quantum dot in application to terahertz photon counting”, Phys. Rev. B73, 081310:1–4 (2006). 10.1103/PhysRevB.73.081310Search in Google Scholar

[292] X.H. Su, J. Yang, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “Terahertz detection with tunneling quantum dot intersublevel photodetector”, Appl. Phys. Lett. 89, 031117-1–3 (2006). 10.1063/1.2233808Search in Google Scholar

[293] T. Ueda, Z. An, S. Komiyama, and K. Hirakawa, “Charge-sensitive infrared phototransistors: Characterization by an all-cryogenic spectrometer”, J. Appl. Phys. 103, 093109:1–7 (2008). Search in Google Scholar

[294] T. Ueda and S. Komiyama, “Novel ultra-sensitive detectors in the 10–50 μm wavelength range”, Sensors 10, 8411–8423 (2010). http://dx.doi.org/10.3390/s10090841110.3390/s100908411Search in Google Scholar PubMed PubMed Central

[295] D. Seliuta, I. Kaalynas, V. Tamoinas, S. Balakauskas, Z. Martnas, S. Amontas, G. Valuis, A. Lisauskas, H.G. Roskos, and K. Köhler, “Silicon lens-coupled bow-tie InGaAs-based broadband terahertz sensor operating at room temperature”, Electron. Lett. 44, 825–827 (2006). http://dx.doi.org/10.1049/el:2006122410.1049/el:20061224Search in Google Scholar

[296] G. Valuis, D. Seliuta, V. Tamoinas, R. Simnikis, S. Balakauskas, and I. Kaalynas, “Selective and broadband terahertz sensors based on GaAs nanostructures”, Workshop THz Wave Technology, Bucharest, 19–20 May, 2008. Search in Google Scholar

[297] J.-H. Dai, J.-H. Lee, Y.-L. Lin, and S.-C. Lee, “In(Ga)As quantum rings for terahertz detectors”, J. Appl. Phys. 47, 2924–2926 (2008). http://dx.doi.org/10.1143/JJAP.47.292410.1143/JJAP.47.2924Search in Google Scholar

[298] S. Bhowmick, G. Huang, W. Guo, C.S. Lee, P. Bhattacharya, G. Ariyawansa, and A.G.U. Perera, “High-performance quantum ring detector for the 1–3 terahertz range”, Appl. Phys. Lett. 96, 231103-1–3 (2010). http://dx.doi.org/10.1063/1.344736410.1063/1.3447364Search in Google Scholar

[299] S. Kim, J.D. Zimmerman, P. Focardi, A.C. Gossard, D.H. Wu, and M.S. Sherwin, “Room temperature terahertz detection based on bulk plasmons in antenna-coupled GaAs field effect transistors”, Appl. Phys. Lett. 92, 253508-1–3 (2008). 10.1063/1.2947587Search in Google Scholar

[300] E.A. Shaner, A.D. Grine, J.L. Reno, M.C. Wanke, and S.J. Allen, “Next-generation detectors: Plasmon grating-gate devices have potential as tunable terahertz detectors”, Laser Focus World, January 2008. Search in Google Scholar

[301] G.C. Dyer, J.D. Crossno, G.R. Aizin, E.A. Shaner, M.C. Wanke, J.L. Reno, and S.J. Allen, “A plasmonic terahertz detector with a monolithic hot electron bolometr”, J. Phys.: Condens. Mat. 21, 1958031-1–6 (2009). http://dx.doi.org/10.1088/0953-8984/21/19/19580310.1088/0953-8984/21/19/195803Search in Google Scholar PubMed

[302] T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano, “A grating-bicoupled plasma-wave photomixer with resonant-cavity enhanced structure”, Opt. Express 14, 4815–4825 (2006). http://dx.doi.org/10.1364/OE.14.00481510.1364/OE.14.004815Search in Google Scholar

Published Online: 2011-3-7
Published in Print: 2011-9-1

© 2011 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-011-0033-3/html
Scroll to top button