Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter July 4, 2012

History of infrared detectors

  • A. Rogalski EMAIL logo
From the journal Opto-Electronics Review

Abstract

This paper overviews the history of infrared detector materials starting with Herschel’s experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940’s. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ∼3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called “dual-use technology applications.” One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

[1] W. Herschel, “Experiments on the refrangibility of the invisible rays of the Sun,” Phil. Trans. Roy. Soc. London 90, 284–292 (1800). Search in Google Scholar

[2] http://coolcosmos.ipac.caltech.edu/sitemap.html#cosmicclas sroom Search in Google Scholar

[3] E.S. Barr, “Historical survey of the early development of the infrared spectral region,” Amer. J. Phys. 28, 42–54 (1960). http://dx.doi.org/10.1119/1.193497510.1119/1.1934975Search in Google Scholar

[4] E.S. Barr, “The infrared pioneers — I. Sir William Herschel,” Infrared Phys. 1, 1 (1961). http://dx.doi.org/10.1016/0020-0891(61)90037-910.1016/0020-0891(61)90037-9Search in Google Scholar

[5] R.A. Smith, F.E. Jones, and R.P. Chasmar, The Detection and Measurement of Infrared Radiation, Clarendon, Oxford, 1958. 10.1063/1.3062526Search in Google Scholar

[6] P.W. Kruse, L.D. McGlauchlin and R.B. McQuistan, Elements of Infrared Technology, Wiley, New York, 1962. Search in Google Scholar

[7] R.D. Hudson, Infrared System Engineering, Wiley-Interscience, New Jersey, 1969. Search in Google Scholar

[8] E.S. Barr, “The infrared pioneers — II. Macedonio Melloni,” Infrared Phys. 2, 67–73 (1962). http://dx.doi.org/10.1016/0020-0891(62)90023-410.1016/0020-0891(62)90023-4Search in Google Scholar

[9] E.S. Barr, “The Infrared Pioneers — III. Samuel Pierpont Langley,” Infrared Phys. 3, 195–206 (1963). http://dx.doi.org/10.1016/0020-0891(63)90024-110.1016/0020-0891(63)90024-1Search in Google Scholar

[10] L.M. Biberman and R.L. Sendall, “Chapter 1. Introduction: A brief history of imaging devices for night vision,” in Electro-Optical Imaging: System Performance and Modeling, edited by L.M. Biberman, pp. 1-1–1-26, SPIE Press, Bellingham, 2000. Search in Google Scholar

[11] J. Caniou, Passive Infrared Detection: Theory and Application, Kluwer Academic Publishers, Dordrecht, 1999 10.1007/978-1-4757-6140-5Search in Google Scholar

[12] K. Herrmann and L. Walther, Wissensspeicher Infrarottechnik (Store of Knowledge in Infrared Technology), Fachbuchverlag, Leipzig, 1990. Search in Google Scholar

[13] T.J. Seebeck, “Magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz,” Abh. Deutsch. Akad. Wiss. Berlin, 265–373 (1822). Search in Google Scholar

[14] http://catalogue.museogalileo.it/section/ElectricityMagnetism.html. Search in Google Scholar

[15] http://earthobservatory.nasa.gov/Features/Langley/langley_2.php. Search in Google Scholar

[16] S.P. Langley, “The bolometer and radiant energy,” Proc. Am. Academy of Arts and Sciences 16, 342–358 (May 1880–Jun. 1881). 10.2307/25138616Search in Google Scholar

[17] C.D. Walcott, Samuel Pierpont Langley, City of Washington, The National Academy of Science, April, 1912. Search in Google Scholar

[18] W. Smith, “Effect of light on selenium during the passage of an electric current,” Nature 7, 303 (1873). 10.1038/007303e0Search in Google Scholar

[19] M. F. Doty, Selenium, List of References, 1917–1925, New York Public Library, New York, 1927. Search in Google Scholar

[20] Applied Optics (November, 1963), commemorative issue with extensive material on Coblentz’s scientific work Search in Google Scholar

[21] W.F. Meggers, William Weber Coblentz.1873–196, National Academy of Science, Washingthon, 1967. Search in Google Scholar

[22] H. Hertz, “Ueber den Einfluss des ultravioletten Lichtes auf die electrische Entladung,” Annalen der Physik 267(8) 983–1000 (1887). http://dx.doi.org/10.1002/andp.1887267082710.1002/andp.18872670827Search in Google Scholar

[23] J. Elster, H. Geitel, “Ueber die Entladung negativ electrischer Korper durch das Sonnen- und Tageslicht,” Ann. Physik 497–514 (1889). 10.1002/andp.18892741202Search in Google Scholar

[24] F. Braun, “Uber die Stromleitung durch Schwefelmetalic,” Annalen der Physik and Chemie 153(4), 556–563 (1874). 10.1002/andp.18752291207Search in Google Scholar

[25] J. C. Bose, “Detector for electrical disturbances,” U. S. Patent 755,840 (Filed September 30, 1901. Issued March 29, 1904). Search in Google Scholar

[26] T.W. Case, “Notes on the change of resistance of certain substrates in light,” Phys. Rev. 9, 305–310 (1917). http://dx.doi.org/10.1103/PhysRev.9.30510.1103/PhysRev.9.305Search in Google Scholar

[27] S.F. Johnson, A History of Light and Colour Measurement. Science in the Shadows, IOP Publishing Ltd, Bristol, 2001. http://dx.doi.org/10.1887/075030754410.1887/0750307544Search in Google Scholar

[28] T.W. Case, “The thalofide cell — a new photoelectric substance,” Phys. Rev. 15, 289 (1920). http://dx.doi.org/10.1103/PhysRev.15.28910.1103/PhysRev.15.289Search in Google Scholar

[29] G. Holst, J.H. de Boer, M.C. Teves, and C.F. Veenemans, “Foto-electrische cel en inrichting waarmede uit een primair, door directe lichtstralen gevormd beeld een geheel ofnagenoeg geheel conform secundair optisch beeld kan,” Dutch Patent 27062 (1928), British Patent 326200; D.R.P. 535208; “An apparatus for the transformation of light of long wavelength into light of short wavelength,” Physica 1, 297–305 (1934). Search in Google Scholar

[30] L. Koller, “Photoelectric emission from thin films of caesium,” Phys. Rev. 36, 1639–1647 (1930); N.R. Campbell, ”Photoelectric emission of thin films,” Phil. Mag. 12, 173–185(1931). http://dx.doi.org/10.1103/PhysRev.36.1639Search in Google Scholar

[31] A.M. Glover, “A review of the development of sensitive phototubes,” Proc. IRE, 413–423, August 1941. 10.1109/JRPROC.1941.230984Search in Google Scholar

[32] S. Asao and M. Suzuki, “Improvement of thin film caesium photoelectric tube,” Proc. Phys. Math. Soc. (Japan, series 3), 12, 247–250. October 1930. Search in Google Scholar

[33] V.P. Ponomarenko and A.M. Filachev, Infrared Techniques and Electro-Optics in Russia: A History 1946–2006, SPIE Press, Bellingham, 2007. Search in Google Scholar

[34] E. W. Kutzscher, “Review on detectors of infrared radiation,” Electro-Opt. Syst. Design 5, 30 (June 1973). Search in Google Scholar

[35] W.N. Arnquist, “Survey of early infrared developments,” Proc. IRE 47 1420–1430 (1959). http://dx.doi.org/10.1109/JRPROC.1959.28702910.1109/JRPROC.1959.287029Search in Google Scholar

[36] R.J. Cushman, “Film-type infrared photoconductors,” Proc. IRE 47, 1471–1475 (1959). http://dx.doi.org/10.1109/JRPROC.1959.28703910.1109/JRPROC.1959.287039Search in Google Scholar

[37] D.J. Lovell, “Cashman thallous sulfide cell,” Appl. Opt. 10, 1003–1008 (1971). http://dx.doi.org/10.1364/AO.10.00100310.1364/AO.10.001003Search in Google Scholar PubMed

[38] D.J. Lovell, “The development of lead salt detectors,” Amer. J. Phys. 37, 467–478 (1969). http://dx.doi.org/10.1119/1.197564610.1119/1.1975646Search in Google Scholar

[39] M. Judt and B. Ciesla, Technology Transfer out of Germany after 1945, Routledge Studies in the History of Science, Technology and Medicine, Overseas Publishers Association, Amsterdam, 1996. Search in Google Scholar

[40] P.R. Norton, “Infrared detectors in the next millennium,” Proc. SPIE 3698, 652–665 (1999) http://dx.doi.org/10.1117/12.35456810.1117/12.354568Search in Google Scholar

[41] A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2010. http://dx.doi.org/10.1201/b1031910.1201/b10319Search in Google Scholar

[42] R.C. Jones, “Phenomenological description of the response and detecting ability of radiation detectors,” Proc. IRE 47, 1495–1502 (1959). http://dx.doi.org/10.1109/JRPROC.1959.28704710.1109/JRPROC.1959.287047Search in Google Scholar

[43] P.W. Kruse, Uncooled Thermal Imaging, SPIE Press, Bellingham, 2001. http://dx.doi.org/10.1117/3.41535110.1117/3.415351Search in Google Scholar

[44] P. Norton, “Third-generation sensors for night vision,” Opto- -Electron. Rev. 14, 1–10 (2006). http://dx.doi.org/10.2478/s11772-006-0001-510.2478/s11772-006-0001-5Search in Google Scholar

[45] http://www.nvl.army.mil/history.html Search in Google Scholar

[46] “Sidewinder article”, http://wiki.scramble.nl/index.php-title =Sidewinder_article Search in Google Scholar

[47] http://ookaboo.com/o/pictures/picture/21952750/Prototype _Sidewinder1_missile_on_an_AD4_ Search in Google Scholar

[48] B.V. Rollin and E.L. Simmons, “Long wavelength infrared photoconductivity of silicon at low temperatures,” Proc. Phys. Soc. B65, 995–996 (1952). 10.1088/0370-1301/65/12/115Search in Google Scholar

[49] E. Burstein, J.J. Oberly, and J.W. Davisson, “Infrared photoconductivity due to neutral impurities in silicon,” Phys. Rev. 89(1), 331–332 (1953). http://dx.doi.org/10.1103/PhysRev.89.33110.1103/PhysRev.89.331Search in Google Scholar

[50] E. Burstein, G. Pines and N. Sclar, “Optical and photoconductive properties of silicon and germanium,” in Photoconductivity Conference at Atlantic City, edited by R. Breckenbridge, B. Russell and E. Hahn, pp. 353–413, Wiley, New York, 1956. Search in Google Scholar

[51] S. Borrello and H. Levinstein, “Preparation and properties of mercury moped germanium,” J. Appl. Phys. 33, 2947–2950 (1962). http://dx.doi.org/10.1063/1.172854010.1063/1.1728540Search in Google Scholar

[52] R. A. Soref, “Extrinsic IR potoconductivity of Si dped with B, Al, Ga, P, As or Sb,” J. Appl. Phys. 38, 5201–5209 (1967). http://dx.doi.org/10.1063/1.170930210.1063/1.1709302Search in Google Scholar

[53] W.S. Boyle and G.E. Smith, “Charge-coupled semiconductor devices,” Bell Syst. Tech. J. 49, 587–593 (1970). Search in Google Scholar

[54] F. Shepherd and A. Yang, “Silicon Schottky retinas for infrared imaging,” IEDM Tech. Dig., 310–313 (1973). 10.1109/IEDM.1973.188717Search in Google Scholar

[55] W.D. Lawson, S. Nielson, E.H. Putley, and A.S. Young, “Preparation and properties of HgTe and mixed crystals of HgTe-CdTe,” J. Phys. Chem. Solids 9, 325–329 (1959). http://dx.doi.org/10.1016/0022-3697(59)90110-610.1016/0022-3697(59)90110-6Search in Google Scholar

[56] T. Elliot, “Recollections of MCT work in the UK at Malvern and Southampton,” Proc. SPIE 7298, 72982M (2009). http://dx.doi.org/10.1117/12.82021410.1117/12.820214Search in Google Scholar

[57] P.W. Kruse, M.D. Blue, J.H. Garfunkel, and W.D. Saur, “Long wavelength photoeffects in mercury selenide, mercury telluride and mercury telluride-cadmium telluride,” Infrared Phys. 2, 53–60, 1962. http://dx.doi.org/10.1016/0020-0891(62)90043-X10.1016/0020-0891(62)90043-XSearch in Google Scholar

[58] J. Melngailis and T. C. Harman, “Single-crystal lead-tin chalcogenides,” in Semiconductors and Semimetals, Vol 5, pp. 111–174, edited by R. K. Willardson and A. C. Beer, Academic Press, New York, 1970. 10.1016/S0080-8784(08)62815-XSearch in Google Scholar

[59] T.C. Harman and J. Melngailis, “Narrow gap semiconductors,” in Applied Solid State Science, Vol. 4, pp. 1–94, edited by R. Wolfe, Academic Press, New York, 1974. 10.1016/B978-0-12-002904-4.50008-5Search in Google Scholar

[60] R. Dornhaus, G. Nimtz, and B. Schlicht, Narrow Gap Semiconductors, Springer, Berlin, 1983. 10.1007/BFb0044919Search in Google Scholar

[61] J. Baars, “New aspects of the material and device technology of intrinsic infrared photodetectors,” in Physics and Narrow Gap Semiconductors, pp. 280–282, edited by E. Gornik, H. Heinrich and L. Palmetshofer, Springer, Berlin (1982). Search in Google Scholar

[62] J.T. Longo, D.T. Cheung, A.M. Andrews, C.C. Wang, and J.M. Tracy, “Infrared focal planes in intrinsic semiconductors,” IEEE Trans. Electr. Dev. ED-25, 213–232 (1978). http://dx.doi.org/10.1109/T-ED.1978.1906210.1109/T-ED.1978.19062Search in Google Scholar

[63] D. Long and J.L. Schmit, “Mercury-cadmium telluride and closely related alloys,” in Semiconductors and Semimetals, Vol. 5, pp. 175–255, edited by R. K. Willardson and A. C. Beer, Academic Press, New York (1970). 10.1016/S0080-8784(08)62816-1Search in Google Scholar

[64] P. Norton, “HgCdTe infrared detectors,” Opto-Electron. Rev. 10, 159–174 (2002). Search in Google Scholar

[65] C. Verie and R. Granger, “Propriétés de junctions p-n d’alliages CdxHg1−xTe,” C. T. Acad. Sc. 261, 3349–3352 (1965). Search in Google Scholar

[66] G.C. Verie and M. Sirieix, “Gigahertz cutoff frequency capabilities of CdHgTe photovoltaic detectors at 10.6 μm,” IEEE J. Quant. Electr. 8, 180–184 (1972). http://dx.doi.org/10.1109/JQE.1972.107693410.1109/JQE.1972.1076934Search in Google Scholar

[67] B.E. Bartlett, D.E. Charlton, W.E. Dunn, P.C. Ellen, M.D. Jenner, and M.H. Jervis, “Background limited photoconductive detectors for use in the 8–14 micron atmospheric window,” Infrared Phys. 9, 35–36 (1969). http://dx.doi.org/10.1016/0020-0891(69)90006-210.1016/0020-0891(69)90006-2Search in Google Scholar

[68] M.A. Kinch, S.R. Borrello, and A. Simmons, “0.1 eV HgCdTe photoconductive detector performance,” Infrared Phys. 17, 127–135 (1977). http://dx.doi.org/10.1016/0020-0891(77)90105-110.1016/0020-0891(77)90105-1Search in Google Scholar

[69] M.A. Kinch, “Fifty years of HgCdTe at Texas Instruments and beyond,” Proc. SPIE 7298, 72982T (2009). 10.1117/12.819304Search in Google Scholar

[70] C.T. Elliott, D. Day, and B.J. Wilson, “An integrating detector for serial scan thermal imaging,” Infrared Physics 22, 31–42 (1982). http://dx.doi.org/10.1016/0020-0891(82)90016-110.1016/0020-0891(82)90016-1Search in Google Scholar

[71] A. Blackburn, M.V. Blackman, D.E. Charlton, W.A.E. Dunn, M.D. Jenner, K.J. Oliver, and J.T.M. Wotherspoon, ”The practical realization and performance of SPRITE detectors,” Infrared Phys. 22, 57–64 (1982). http://dx.doi.org/10.1016/0020-0891(82)90019-710.1016/0020-0891(82)90019-7Search in Google Scholar

[72] D. L. Smith and C. Mailhiot, “Proposal for strained type II superlattice infrared detectors,” J. Appl. Phys. 62, 2545–2548 (1987). http://dx.doi.org/10.1063/1.33946810.1063/1.339468Search in Google Scholar

[73] B.F. Levine, “Quantum-well infrared photodetectors,” J. Appl. Phys. 74, R1–R81 (1993). http://dx.doi.org/10.1063/1.35425210.1063/1.354252Search in Google Scholar

[74] A. Rogalski, “Quantum well photoconductors in infrared detectors technology,” J. Appl. Phys. 93, 4355–4391 (2003). http://dx.doi.org/10.1063/1.155822410.1063/1.1558224Search in Google Scholar

[75] H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors, Springer, Berlin, 2007. Search in Google Scholar

[76] M. Zandian, J.D. Garnett, R.E. DeWames, M. Carmody, J.G. Pasko, M. Farris, C.A. Cabelli, D.E. Cooper, G. Hildebrandt, J. Chow, J.M. Arias, K. Vural, and D.N.B. Hall, “Mid-wavelength infrared p-on-on Hg1−xCdxTe heterostructure detectors: 30–120 Kelvin state-of-the-art performance,” J. Electron. Mater. 32, 803–809 (2003). http://dx.doi.org/10.1007/s11664-003-0074-610.1007/s11664-003-0074-6Search in Google Scholar

[77] A. Rogalski and R. Ciupa, “Performance limitation of short wavelength infrared InGaAs and HgCdTe photodiodes,” J. Electron. Mater. 28, 630–636 (1999). http://dx.doi.org/10.1007/s11664-999-0046-610.1007/s11664-999-0046-6Search in Google Scholar

[78] M.Z. Tidrow, W.A. Beck, W.W. Clark, H.K. Pollehn, J.W. Little, N.K. Dhar, P.R. Leavitt, S.W. Kennerly, D.W. Beekman, A.C. Goldberg, and W.R. Dyer, “Device physics and focal plane applications of QWIP and MCT,” Opto-Electron. Rev. 7, 283–296 (1999). Search in Google Scholar

[79] Y. Wei and M. Razeghi, “Modeling of type-II InAs/GaSb superlattices using an empirical tight-binding method and interface engineering,” Phys. Rev. B69, 085316 (2004). 10.1103/PhysRevB.69.085316Search in Google Scholar

[80] A. Rogalski, “Hg-based alternatives to MCT,” in Infrared Detectors and Emitters: Materials and Devices, pp. 377–400, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2001. http://dx.doi.org/10.1007/978-1-4615-1607-1_1310.1007/978-1-4615-1607-1_13Search in Google Scholar

[81] M.J. E. Golay, “A pneumatic infrared detector,” Rev. Sci. Instr. 18, 357–362 (1947). http://dx.doi.org/10.1063/1.174094910.1063/1.1740949Search in Google Scholar

[82] E.M. Wormser, “Properties of thermistor infrared detectors,” J. Opt. Soc. Amer. 43, 15–21 (1953). http://dx.doi.org/10.1364/JOSA.43.00001510.1364/JOSA.43.000015Search in Google Scholar

[83] R. W. Astheimer, “Thermistor infrared detectors,” Proc. SPIE 443, 95–109 (1983). Search in Google Scholar

[84] G.W. McDaniel and D.Z. Robinson, “Thermal imaging by means of the evaporograph,” Appl. Opt. 1, 311–324 (1962). http://dx.doi.org/10.1364/AO.1.00031110.1364/AO.1.000311Search in Google Scholar

[85] C. Hilsum and W.R. Harding, “The theory of thermal imaging, and its application to the absorption-edge image tube,” Infrared Phys. 1, 67–93 (1961). http://dx.doi.org/10.1016/0020-0891(61)90045-810.1016/0020-0891(61)90045-8Search in Google Scholar

[86] A.J. Goss, “The pyroelectric vidicon — A review,” Proc. SPIE 807, 25–32 (1987). Search in Google Scholar

[87] R. A. Wood and N. A. Foss, “Micromachined bolometer arrays achieve low-cost imaging,” Laser Focus World, 101–106 (June, 1993). Search in Google Scholar

[88] http://www.flir.com/uploadedFiles/Eurasia/Cores_and_Components/Technical_Notes/uncooled%20detectors%20BST.pdf Search in Google Scholar

[89] T. Schimert, C. Hanson, J. Brady, T. Fagan, M. Taylor, W. McCardel, R. Gooch, M. Gohlke, and A.J. Syllaios, “Advances in small pixel, large format a-Si bolometer arrays,” Proc. SPIE 7298, 72980T-1–5 (2009). 10.1117/12.818576Search in Google Scholar

[90] JJ. Yon, JP. Nieto, L. Vandroux, P. Imperinetti, E. Rolland, V. Goudon, C. Vialle, and A. Arnaud, ”Low resistance α-SiGe based microbolometer pixel for future smart IR FPA,” Proc. SPIE 7660, 76600U-1–7 (2010). 10.1117/12.850862Search in Google Scholar

[91] C. Hanson, “IR detectors: amorphous-silicon bolometers could surpass IR focal-plane technologies,” Laser Focus Word, April 1, 2011. Search in Google Scholar

[92] N. Roxhed, F. Niklaus, A.C. Fischer, F. Forsberg, L. Höglund, P. Ericsson, B. Samel, S. Wissmar, A. Elfvingc, T.I. Simonsen, K. Wang, and N. Hoivik, “Low-cost uncooled microbolometers for thermal imaging,” Proc. SPIE 7726, 772611-1–10 (2010). 10.1117/12.855752Search in Google Scholar

[93] Seeing Photons: Progress and Limits of Visible and Infared Sensor Arrays, Committee on Developments in Detector Technologies; National Research Council, 2010, http://www.nap.edu/catalog/12896.html Search in Google Scholar

[94] P. Norton, “Detector focal plane array technology”, in Encyclopedia of Optical Engineering, edited by R. Driggers, pp. 320–348, Marcel Dekker Inc., New York, 2003. Search in Google Scholar

[95] R. Thom, “High density infrared detector arrays,” U.S. Patent No. 4,039,833 (1977). Search in Google Scholar

[96] A.S. Gilmore, “High-definition infrared FPAs,” Raytheon Technology Today, issue 1 (2008). Search in Google Scholar

[97] G. Destefanis, P. Tribolet, M. Vuillermet, and D.B. Lanfrey, “MCT IR detectors in France,” Proc. SPIE 8012, 801235-1–12 (2011) 10.1117/12.886904Search in Google Scholar

[98] A. Hoffman, “Semiconductor processing technology improves resolution of infrared arrays,” Laser Focus World, 81–84, February 2006. Search in Google Scholar

[99] J.W. Beletic, R. Blank, D. Gulbransen, D. Lee, M. Loose, E.C. Piquette, T. Sprafke, W.E. Tennant, M. Zandian, and J. Zino, “Teledyne Imaging Sensors: Infrared imaging technologies for astronomy & civil space,” Proc. SPIE 7021, 70210H (2008). http://dx.doi.org/10.1117/12.79038210.1117/12.790382Search in Google Scholar

[100] A.M. Fowler, D. Bass, J. Heynssens, I. Gatley, F.J. Vrba, H.D. Ables, A. Hoffman, M. Smith, and J. Woolaway, “Next generation in InSb arrays: ALADDIN, the 1024×1024 InSb focal plane array readout evaluation results,” Proc. SPIE 2268, 340–345 (1994). http://dx.doi.org/10.1117/12.18584410.1117/12.185844Search in Google Scholar

[101] E. Beuville, D. Acton, E. Corrales, J. Drab, A. Levy, M. Merrill, R. Peralta, and W. Ritchie, “High performance large infrared and visible astronomy arrays for low background applications: Instruments performance data and future developments at Raytheon,” Proc. SPIE 6660, 66600B (2007). http://dx.doi.org/10.1117/12.73484610.1117/12.734846Search in Google Scholar

[102] A.W. Hoffman, E. Corrales, P.J. Love, and J. Rosbeck, M. Merrill, A. Fowler, and C. McMurtry, “2K×2K InSb for astronomy,” Proc. SPIE 5499, 59–67 (2004). http://dx.doi.org/10.1117/12.55520010.1117/12.555200Search in Google Scholar

[103] M.E. Ressler, H. Cho, R.A.M. Lee, K.G. Sukhatme, J.J. Drab, G. Domingo, M.E. McKelvey, R.E. McMurray, Jr., and J.L. Dotson, “Performance of the JWST/MIRI Si:As detectors,” Proc. SPIE 7021, 70210O (2008). http://dx.doi.org/10.1117/12.78960610.1117/12.789606Search in Google Scholar

[104] A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105, 091101 (2009). http://dx.doi.org/10.1063/1.309957210.1063/1.3099572Search in Google Scholar

[105] D.F. King, J.S. Graham, A.M. Kennedy, R.N. Mullins, J.C. McQuitty, W.A. Radford, T.J. Kostrzewa, E.A. Patten, T.F. Mc Ewan, J.G. Vodicka, and J.J. Wootana, “3rd-generation MW/LWIR sensor engine for advanced tactical systems,” Proc. 6940, 69402R (2008). Search in Google Scholar

[106] S. Gunapala, S.V. Bandara, J.K. Liu, J.M. Mumolo, D.Z. Ting, C.J. Hill, J. Nguyen, B. Simolon, J. Woolaway, S.C. Wang, W. Li, P.D. LeVan, and M.Z. Tidrow, “Demonstration of megapixel dual-band QWIP focal plane array,” IEEE J. Quantum. Electron. 46, 285–293 (2010). http://dx.doi.org/10.1109/JQE.2009.202455010.1109/JQE.2009.2024550Search in Google Scholar

[107] S.D. Gunapala, S.V. Bandara, J.K. Liu, E.M. Luong, S.B. Rafol, J.M. Mumolo, D.Z. Ting, J.J. Bock, M.E. Ressler, M.W. Werner, P.D. LeVan, R. Chehayeb, C.A. Kukkonen, M. Ley, P. LeVan, and M.A. Fauci, “Recent developments and applications of quantum well infrared photodetector focal plane arrays,” Opto-Electron. Rev. 8, 150–163 (2001). Search in Google Scholar

[108] A. Rogalski, “New material systems for third generation infrared photodetectors,” Opto-Electron. Rev. 16, 458–482 (2008). http://dx.doi.org/10.2478/s11772-008-0047-710.2478/s11772-008-0047-7Search in Google Scholar

[109] R. Rehm, M. Walther, J. Schmitz, F. Rutz, A. Worl, R. Scheibner, and J. Ziegler, “Type-II superlattices: the Fraunhofer perspective,” Proc. SPIE 7660, 76601G-1–12 (2010). Search in Google Scholar

[110] “Uncooled infrared imaging market commercial & military applications,” Market & Technology Report — available in JULY 2011, Yole Development. Search in Google Scholar

[111] http://www.sofradir-ec.com/wp-uncooled-detectors-achieve.asp Search in Google Scholar

[112] S.H. Black, T. Sessler, E. Gordon, R. Kraft, T Kocian, M. Lamb, R. Williams, and T. Yang, “Uncooled detector development at Raytheon,” Proc. SPIE 8012, 80121A-1–12 (2011). 10.1117/12.887816Search in Google Scholar

[113] P. Martyniuk and A. Rogalski, “Quantum-dot infrared photodetectors: Status and outlook,” Prog. Quantum Electron. 32, 89–120 (2008). http://dx.doi.org/10.1016/j.pquantelec.2008.07.00110.1016/j.pquantelec.2008.07.001Search in Google Scholar

Published Online: 2012-7-4
Published in Print: 2012-9-1

© 2012 SEP, Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.2478/s11772-012-0037-7/html
Scroll to top button