Skip to main content
Log in

Hamilton’s principle with variable order fractional derivatives

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We propose a generalization of Hamilton’s principle in which the minimization is performed with respect to the admissible functions and the order of the derivation. The Euler-Lagrange equations for such minimization are derived. They generalize the classical Euler-Lagrange equation. Also, a new variational problem is formulated in the case when the order of the derivative is defined through a constitutive equation. Necessary conditions for the existence of the minimizer are obtained. They imply various known results in a special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.M. Atanackovic, On a stationarity principle for non conservative dynamical systems. Int. J. Non-Linear Mechanics 13 (1978), 139–143.

    Article  MATH  Google Scholar 

  2. T.M. Atanackovic, Lj. Oparnica and S. Pilipovic, On a nonlinear distributed order fractional differential equation. J. Math. Anal. Appl. 328 (2007), 590–608.

    Article  MATH  MathSciNet  Google Scholar 

  3. T.M. Atanackovic, Lj. Oparnica, S. Pilipovic, Distributional framework for solving fractional differential equations. Integral Transf. Spec. Funct. 20 (2009), 215–222.

    Article  MathSciNet  Google Scholar 

  4. T.M. Atanackovic, S. Konjik, S. Pilipovic, Variational problems with fractional derivatives: Euler-Lagrange equations. J. Phys. A: Math. Theor. 41 (2008), 095201.

    Article  MathSciNet  Google Scholar 

  5. T.M. Atanackovic, S. Konjik, Lj. Oparnica, S. Pilipovic, Generalized Hamilton’s principle with fractional derivatives. J. Phys. A: Math. Theor. 43 (2010), 255203.

    Article  MathSciNet  Google Scholar 

  6. O.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  7. O.P. Agrawal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynamics 38 (2004), 323–337.

    Article  MATH  MathSciNet  Google Scholar 

  8. C.F.M. Coimbra, Mechanics with variable-order differential operators. Ann. Phys. (Leipzig) 12 (2003), 692–703.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Das, Functional Fractional Calculus. Springer, Berlin, 2008.

    MATH  Google Scholar 

  10. I.M. Gelfand, S.V. Fomin, Calculus of Variations. Prentice Hall, Englewood Cliffs, New Jersey, 1963.

    Google Scholar 

  11. G. Diaz, C.F.M. Coimbra, Nonlinear dynamics and control of a variable order oscillator with application to the van der Pol equation. Nonlinear Dyn. 56 (2009), 145–157.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Ito, K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. Ser. SIAM’s Advances in Design and Control, 2008.

  13. D. Ingman, J. Suzdalnitsky, Control of damping oscillations by fractional differential operator with time-dependent order. Comput. Methods Appl. Mech. Engrg. 193 (2004), 5585–5595.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Kilbas, H.M. Srivastava, J.J. Truillo, Theory and applications of Fractional Differential Equations. Elsevier, 2006.

  15. C.F. Lorenzo and T.T. Hartley, Variable order and distributed order fractional operators. Nonlin. Dyn. 29 (2002), 57–98.

    Article  MATH  MathSciNet  Google Scholar 

  16. S.I. Muslih, D. Baleanu, Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304 (2005), 599–606.

    Article  MATH  MathSciNet  Google Scholar 

  17. L.E.S. Ramirez, C.F.M. Coimbra, A variable order constitutive relation for viscoelasticity. Ann. Phys. (Leipzig) 16 (2007), 543–552.

    Article  MATH  MathSciNet  Google Scholar 

  18. L.E.S. Ramirez, C.F.M. Coimbra, On the selection and meaning of variable order operators for dynamic modeling. Intern. Journal of Differential Equations, To appear (2010), doi:10.1155/2010/846107.

  19. F. Riewe, Nonconservatice Lagrangian and Hamiltonian mechanics. Physical Review E 53 (1996), 1890–1899.

    Article  MathSciNet  Google Scholar 

  20. F. Riewe, Mechanics with fractional derivatives. Physical Review E 55 (1997), 3581–3592.

    Article  MathSciNet  Google Scholar 

  21. B. Ross, S. Samko, Integration and differentiation to a variable fractional order. Integr. Transf. Spec. Funct., 1 (1993), 277–300.

    Article  MATH  MathSciNet  Google Scholar 

  22. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Amsterdam, 1993.

    MATH  Google Scholar 

  23. C.M. Soon, C.F.M. Coimbra, M.H. Kobayashi, The variable viscoelasticity oscillator. Ann. Phys. (Leipzig) 14 (2005), 378–389.

    Article  MATH  Google Scholar 

  24. S. Umarov, S. Steinberg, Variable order differential equations with piecewise constant order-function and diffusion with changing modes. Zeitschrift für Analysis und iher Anwendungen 28 (2009), 431–450.

    Article  MATH  MathSciNet  Google Scholar 

  25. B.D. Vujanovic, S.E. Jones, Variational Methods in Nonconservative Phenomena. Academic Press, Boston, 1989.

    MATH  Google Scholar 

  26. B.D. Vujanovic, T.M. Atanackovic, An Introduction to Modern Variational Techniques in Mechanics and Engineering. Birkhauser, Boston, 2004.

    MATH  Google Scholar 

  27. P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47 (2009), 1760–1781.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teodor M. Atanackovic.

Additional information

Dedicated to 80-th birthday of Prof. Rudolf Gorenflo

About this article

Cite this article

Atanackovic, T.M., Pilipovic, S. Hamilton’s principle with variable order fractional derivatives. fcaa 14, 94–109 (2011). https://doi.org/10.2478/s13540-011-0007-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-011-0007-7

MSC 2010

Key Words and Phrases

Navigation