Skip to main content
Log in

Fractional calculus and Sinc methods

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Fractional integrals, fractional derivatives, fractional integral equations, and fractional differential equations are numerically solved by Sinc methods. Sinc methods are able to deal with singularities of the weakly singular integral equations of Riemann-Liouville and Caputo type. The convergence of the numerical method is numerically examined and shows exponential behavior. Different examples are used to demonstrate the effective derivation of numerical solutions for different types of fractional differential and integral equations, linear and non-linear ones. Equations of mixed ordinary and fractional derivatives, integro-differential equations are solved using Sinc methods. We demonstrate that the numerical calculation needed in fractional calculus can be gained with high accuracy using Sinc methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

    MATH  Google Scholar 

  2. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.

    MATH  Google Scholar 

  3. A. A. Kilbas, H. M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

    MATH  Google Scholar 

  4. J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007; http://www.springerlink.com/content/978-1-4020-6041-0/ #section=345728&page=1

    MATH  Google Scholar 

  5. S. Das, Functional Fractional Calculus for System Identification and Controls, Springer-Verlag Berlin Heidelberg, Berlin, 2008; http://www.springerlink.com/content/978-3-540-72702-6/ #section=234316&page=1

    MATH  Google Scholar 

  6. N.H. Abel, Auflösung einer mechanischen Aufgabe, J. Reine Angew. Math. 1 (1826), 153–157.

    Article  MATH  Google Scholar 

  7. K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Heidelberg, 2010; http://www.springer.com/mathematics/dynamical+systems/book/ 978-3-642-14573-5

    MATH  Google Scholar 

  8. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their solution and Some of Their Applications, Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  9. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, Hackensack NJ, 2010.

    Book  MATH  Google Scholar 

  10. A. M. Mathai, R.K. Saxena, and H.J. Haubold, The H-function: Theory and Applications, Springer, New York, 2010; http://www.springerlink.com/content/978-1-4419-0915-2/ #section=534430&page=1

    MATH  Google Scholar 

  11. R. Gorenflo and F. Mainardi, Fractional calculus, arXiv:0805.3823v1 [math-ph], 25 May 2008.

  12. N. Südland, G. Baumann, and T.F. Nonnenmacher, Open Problem: Who knows about the ℵ-functions ?, Fract. Calc. Appl. Anal. 1, No 4 (1998), 401–402; http://www.math.bas.bg/~fcaa/volume1/pp401-402.gif

    Google Scholar 

  13. N. Südland, Fraktionale Differentialgleichungen und Foxsche HFunktionen mit Beispielen aus der Physik, PhD Thesis, University of Ulm, 2000.

  14. A. M. Mathai and H. J. Haubold, Special Functions for Applied Scientists, Springer, New York, 2008; http://www.springerlink.com/content/978-0-387-75893-0/ #section=202128&page=1

    Book  MATH  Google Scholar 

  15. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Application, CRC Press, Boca Raton, 1993.

    Google Scholar 

  16. A. D. Freed and K. Diethelm, Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional derivative kernels with application to the human calcaneal fat pad, Biomech. Mod. Mech. 5 (2006), 203–215.

    Article  Google Scholar 

  17. Ch. Lubich, Runge-Kutta theory for Volterra and Abel integral equations of the second kind, Math. Comput. 41 (1983), 87–102.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Schmidt and L. Gaul, FE Implementation of Viscoelastic Constitutive Stress-Strain Relations Involving Fractional Time Derivatives, Preprint, 2001, 1–11.

  19. O. P. Agrawal and P. Kumar, Comparison of five numerical schemes for fractional differential equations, In: J. Sabatier, O. P. Agrawal, and J. A. T. Machado (Ed-s), Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht (2007), 43–60.

    Google Scholar 

  20. L. Yuan and O. P. Agrawal, A numerical scheme for dynamic systems containing fractional derivatives, J. Vib. Acoust. 124 (2002), 014502–014506.

    Article  Google Scholar 

  21. S. Momani and Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A 365 (2007), 345–350.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Diethelm, N. J. Ford, A. D. Freed, and Y. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Eng. 194 (2005), 743–773.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. McNamee, F. Stenger, and E. L. Whitney, Whittaker’s cardinal function in retrospect, Math. Comp. 23 (1971), 141–154.

    MathSciNet  Google Scholar 

  24. F. Stenger, Collocating convolutions, Math. Comp. 64 (1995), 211–235.

    Article  MathSciNet  MATH  Google Scholar 

  25. G.-A. Zakeri and M. Navab, Sinc collocation approximation of nonsmooth solution of a nonlinear weakly singular Volterra integral equation, J. Comp. Phys. 229 (2010), 6548–6557.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Okayama, T. Matsuo, and M. Sugihara, Sinc-collocation Methods for Weakly Singular Fredholm Integral Equations of the Second Kind, 2009; http://www.keisu.t.u-tokyo.ac.jp/research/techrep/index.html

  27. F. Stenger, Handbook of Sinc Numerical Methods, CRC Press, Boca Raton, 2011; http://www.crcpress.com/product/isbn/9781439821589

    MATH  Google Scholar 

  28. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Acad. Publ., Dordrecht, 1994.

    MATH  Google Scholar 

  29. J. T. Edwards, J. A. Roberts, and N. J. Ford, A comparison of Adomiannal differential equations: An application-oriented exposition using differential operators of Caputo type, Numerical Analysis Report, Manchester Centre for Computational Mathematics 309 (1997), 1–18.

    Google Scholar 

  30. A. Répaci, Nonlinear dynamical systems: On the accuracy of adomian’s decomposition method, Appl. Math. Lett. 3 (1990), 35–39.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC Press, Boca Raton, 2004.

    MATH  Google Scholar 

  32. J. H. He, Approximate solution of non linear differential equations with convolution product nonlinearities, Comput. Meth. Appl. Mech. Eng. 167 (1998), 69–73.

    Article  MATH  Google Scholar 

  33. J. H. He, Variational iteration method — some recent results and new interpretations, J. Comput. Appl. Math. 207 (2007), 3–17.

    Article  MathSciNet  MATH  Google Scholar 

  34. Z. Odibata, S. Momanib, and V. S. Erturkc, Generalized differential transform method: Application to differential equations of fractional order, Appl. Math. Comp. 197 (2008), 467–477.

    Article  Google Scholar 

  35. M. Tataria and M. Dehghan, On the convergence of He’s variational iteration method, J. Comp. Appl. Math. 207 (2007), 121–128.

    Article  Google Scholar 

  36. S. Liang and D. J. Jeffreya, Comparison of homotopy analysis method and homotopy perturbation method through an evolution equation, Comm. Non. Sci. Num. Sim. 14 (2009), 4057–4064.

    Article  MATH  Google Scholar 

  37. J.-P. Berrut, Barycentric formulae for cardinal (SINC-)interpolants, Numer. Math. 54 (1989), 703–718.

    Article  MathSciNet  MATH  Google Scholar 

  38. V. Daftardar-Gejji and H. Jafari, Analysis of a system of nonautonomous fractional differential equations involving Caputo derivatives, J. Math. Anal. Appl. 328 (2007), 1026–1033.

    Article  MathSciNet  MATH  Google Scholar 

  39. F. Stenger, Summary of Sinc numerical methods, J. Comp. Appl. Math. 121 (2000), 379–420; http://www.mendeley.com/research/summary-sinc-numerical-methods-13/

    Article  MathSciNet  MATH  Google Scholar 

  40. K. Diethelm and N. J. Ford, Numerical solution of the Bagley-Torvik equation, Numerical Analysis Report, Manchester Centre for Computational Mathematics 378 (2003), 1–13.

    Google Scholar 

  41. G. Baumann, N. Südland, and T. F. Nonnenmacher, Anomalous relaxation and diffusion processes in complex systems, Trans. Th. Stat. Phys. 29 (2000), 157–171.

    Article  MATH  Google Scholar 

  42. M. Caputo and F. Mainardi, A new dissipation model based on memory mechanism, Pure Appl. Geophys. 91 (1971), 134–147; http://www.springerlink.com/content/wv5233j83145/?sortorder=asc&po=10; Reprinted in: Fract. Calc. Appl. Anal. 10, No 3 (2007), 309–324; at http://www.math.bas.bg/~fcaa

    Article  Google Scholar 

  43. K. Diethelm, Efficient solution of multi-term fractional differential equations using P(EC)mE methods, Computing 71 (2003), 305–319.

    Article  MathSciNet  MATH  Google Scholar 

  44. M. A. Kowalski, K. A. Sikorski, and F. Stenger, Selected Topics in Approximation and Computation, Oxford Univ. Press, New York, 1995.

    MATH  Google Scholar 

  45. F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, New York, 1993.

    Book  MATH  Google Scholar 

  46. G. Baumann and M. Mnuk, Elements — An object-oriented approach to industrial software development, The Mathematica Journal 10 (2006), 161–186; http://www.mathematica-journal.com/issue/v10i1/Elements.html

    Google Scholar 

  47. G. Baumann, Mathematica® for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity and Fractals, Springer, New York, 2005; http://www.springerlink.com/content/978-0-387-21933-2/ #section=531623&page=1

    MATH  Google Scholar 

  48. C. Lubich, Convolution Quadrature and Discretized Operational Calculus: I, Numer. Math. 52 (1988), 129–145.

    Article  MathSciNet  MATH  Google Scholar 

  49. C. Lubich, Convolution Quadrature and Discretized Operational Calculus: II, Numer. Math. 52 (1988), 413–425.

    Article  MathSciNet  MATH  Google Scholar 

  50. K. Diethelm, An improvement of a nonclassical numerical method for the computation of fractional derivatives, J. Vib. Acoust. 131 (2009), 321–325.

    Article  Google Scholar 

  51. P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech. 51 (1984), 294–298.

    Article  MATH  Google Scholar 

  52. P. Linz, Analytical and Numerical Methods for Volterra Equations, Soc. for Industrial and Applied Mathematics, Philadelphia, 1985.

    MATH  Google Scholar 

  53. H. Brunner, The numerical analysis of functional integral and integrodifferential equations of Volterra type, Acta Numerica 13 (2004), 55–145.

    Article  MathSciNet  Google Scholar 

  54. H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Baumann.

About this article

Cite this article

Baumann, G., Stenger, F. Fractional calculus and Sinc methods. fcaa 14, 568–622 (2011). https://doi.org/10.2478/s13540-011-0035-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-011-0035-3

MSC 2010

Key Words and Phrases

Navigation