Skip to main content
Log in

Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, the Cauchy problem for the spatially one-dimensional distributed order diffusion-wave equation

$\int_0^2 {p(\beta )D_t^\beta u(x,t)d\beta } = \frac{{\partial ^2 }} {{\partial x^2 }}u(x,t) $

is considered. Here, the time-fractional derivative D β t is understood in the Caputo sense and p(β) is a non-negative weight function with support somewhere in the interval [0, 2]. By employing the technique of the Fourier and Laplace transforms, a representation of the fundamental solution of the Cauchy problem in the transform domain is obtained. The main focus is on the interpretation of the fundamental solution as a probability density function of the space variable x evolving in time t. In particular, the fundamental solution of the time-fractional distributed order wave equation (p(β) 0, 0 ≤ β < 1) is shown to be non-negative and normalized. In the proof, properties of the completely monotone functions, the Bernstein functions, and the Stieltjes functions are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Atanacković, S. Pilipović and D. Zorica, Time distributed order diffusion-wave equation. I. Volterra type equation. Proc. R. Soc. A 465 (2009), 1869–1891.

    Article  MATH  Google Scholar 

  2. T. Atanacković, S. Pilipović and D. Zorica, Time distributed order diffusion-wave equation, II. Application of Laplace and Fourier transforms. Proc. R. Society A 465 (2009), 1893–1917.

    Article  MATH  Google Scholar 

  3. B. Baeumer, S. Kurita and M.M. Meerschaert, Inhomogeneous fractional diffusion equations. Fract. Calc. Appl. Anal. 8, No 4 (2005), 371–386, available at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  4. L. Beghin and E. Orsingher, The telegraph process stopped at stable-distributed times and its connection with the fractional telegraph equation. Fract. Calc. Appl. Anal. 6, No 2 (2003), 187–204.

    MathSciNet  MATH  Google Scholar 

  5. N. H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation. Cambridge University Press, London etc., 1987.

    MATH  Google Scholar 

  6. M. Caputo, Mean fractional order derivatives: Differential equations and filters. Annals Univ. Ferrara-Sez. VII-Sc.Mat. XLI (1995), 73–84.

    MathSciNet  Google Scholar 

  7. A. V. Chechkin, R. Gorenflo and I.M. Sokolov, Retarding sub-diffusion and accelerating super-diffusion governed by distributed order fractional diffusion equations. Phys. Rev. E 66 (2002), 046129/1–7.

    Article  Google Scholar 

  8. A. V. Chechkin, R. Gorenflo and I.M. Sokolov, Fractional diffusion in inhomogeneous media. J. Physics A: Math. Gen. 38 (2005), L679–L684.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. V. Chechkin, V.Yu Gonchar, R. Gorenflo, N. Korabel and I.M. Sokolov, Generalized fractional diffusion equations for accelerating subdiffusion and truncated Levy flights. Physical Review E 78 (2008), 021111/1–13.

    Article  MathSciNet  Google Scholar 

  10. A. V. Chechkin, R. Gorenflo, I.M. Sokolov and V.Yu. Gonchar, Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6, No 3 (2003), 259–279.

    MathSciNet  MATH  Google Scholar 

  11. K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Operators of Caputo Type. Lecture Notes in Mathematics, Springer-Verlag, Heidelberg etc., 2010.

    Book  MATH  Google Scholar 

  12. W. Feller, An Introduction to Probability Theory and its Applications, Volume II. Second Edition, J. Wiley & Sons Inc., 1971.

    Google Scholar 

  13. Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation, I, II. Osaka J. Math. 27 (1990), 309–321, 797–804.

    MathSciNet  MATH  Google Scholar 

  14. I. M. Gel’fand and G.E. Shilov, Generalized Functions, Vol. I. Academic Press, New York and London, 1964.

    Google Scholar 

  15. R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi (Eds.): Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien and New York, 223–276, 1997; E-print: http://arxiv.org/abs/0805.3823.

    Google Scholar 

  16. R. Gorenflo and F. Mainardi, Subordination pathways to fractional diffusion. The European Phys. J., Special Topics 193 (2011), 119–132.

    Article  Google Scholar 

  17. A. N. Kochubei, Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl. 340 (2008), 252–281.

    Article  MathSciNet  MATH  Google Scholar 

  18. A.N. Kochubei, General fractional calculus, evolution equations, and renewal processes. Integral Equations and Operator Theory 21 (2011), 583–600.

    Article  MathSciNet  Google Scholar 

  19. Yu. Luchko, Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, No 4 (2009), 409–422; available at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  20. Yu. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Computers and Mathematics with Applications 59 (2010), 1766–1772.

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu. Luchko, Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374 (2011), 538–548.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos, Solitons & Fractals 7 (1996), 1461–1477.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics. In: A. Carpinteri and F. Mainardi (Eds.): Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien and New York, 291–348, 1997; E-print: http://arxiv.org/abs/1201.0863

    Google Scholar 

  24. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London, 2010.

    Book  MATH  Google Scholar 

  25. F. Mainardi, Yu Luchko and G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192.

    MathSciNet  MATH  Google Scholar 

  26. F. Mainardi, G. Pagnini, and R. Gorenflo, Some aspects of fractional diffusion of single and distributed orders. Appl. Math. Comput. 187 (2007), 295–305.

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Mainardi, R. Gorenflo and M. Stojanović, The two forms of fractional relaxation of distributed order. J. Vibration and Control Theory 13 (2007), 1249–1268; E-print: http://arxiv.org/abs/cond-mat/07011311.

    Article  MATH  Google Scholar 

  28. F. Mainardi, A. Mura, G. Pagnini and R. Gorenflo, Time-fractional diffusion of distributed order. J. Vibration and Control 14 (2008), 1267–1290; E-print: http://arxiv.org/abs/cond-mat/07011312.

    Article  MathSciNet  MATH  Google Scholar 

  29. K. S. Miller and S.G. Samko, Completely monotonic functions. Integral Transforms and Special Functions 12 (2001), 389–402.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Naber, Distributed order fractional subdiffusion. Fractals 12 (2004), 23–32.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Orsingher and L. Beghin, Time-fractional telegraph equations and telegraph processes with Brownian time. Prob. Theory Rel. Fields 128 (2004), 141–160.

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Podlubny, Fractional Differential Equations. Mathematics in Science and Engineering 198, Academic Press, 1999.

    MATH  Google Scholar 

  33. R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions. Theory and Applications. De Gruyter, Berlin, 2010.

    MATH  Google Scholar 

  34. W. R. Schneider and W. Wyss, Fractional diffusion and wave equations. J. Math. Physics 30 (1989), 134–144.

    Article  MathSciNet  MATH  Google Scholar 

  35. I. M. Sokolov, A.V. Chechkin and J. Klafter, Distributed order fractional kinetics. Acta Physica Polonica 35 (2004), 1323–1341.

    Google Scholar 

  36. S. Umarov and R. Gorenflo, Cauchy and nonlocal multipoint problems for distributed order pseudo-differential equations. Fract. Calc. Appl. Anal. 8, No 1 (2005), 73–86; available at http://www.math.bas.bg/~fcaa.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Gorenflo.

Additional information

Dedicated to Professor Francesco Mainardi on the occasion of his 70th anniversary

About this article

Cite this article

Gorenflo, R., Luchko, Y. & Stojanović, M. Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. fcaa 16, 297–316 (2013). https://doi.org/10.2478/s13540-013-0019-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0019-6

MSC 2010

Key Words and Phrases

Navigation