J Appl Biomed 11:47-58, 2013 | DOI: 10.2478/v10136-012-0031-x

Artificial neural networks in medical diagnosis

Filippo Amato1, Alberto López1, Eladia María Peña-Méndez2, Petr Vaòhara3, Ale¹ Hampl3,4, Josef Havel1,5,6,*
1 Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
2 Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of La Laguna, La Laguna, Tenerife, Spain
3 Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
4 International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
5 Department of Physical Electronics, Faculty of Science, Masaryk University, Brno, Czech Republic
6 R&D Centre for low-cost plasma and nanotechnology surface modifications, CEPLANT, Masaryk University, Brno, Czech Republic

An extensive amount of information is currently available to clinical specialists, ranging from details of clinical symptoms to various types of biochemical data and outputs of imaging devices. Each type of data provides information that must be evaluated and assigned to a particular pathology during the diagnostic process. To streamline the diagnostic process in daily routine and avoid misdiagnosis, artificial intelligence methods (especially computer aided diagnosis and artificial neural networks) can be employed. These adaptive learning algorithms can handle diverse types of medical data and integrate them into categorized outputs. In this paper, we briefly review and discuss the philosophy, capabilities, and limitations of artificial neural networks in medical diagnosis through selected examples.

Keywords: medical diagnosis; artificial intelligence; artificial neural networks; cancer; cardiovascular diseases; diabetes

Received: December 17, 2012; Published: July 31, 2013  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Amato F, López A, Peña-Méndez EM, Vaòhara P, Hampl A, Havel J. Artificial neural networks in medical diagnosis. J Appl Biomed. 2013;11(2):47-58. doi: 10.2478/v10136-012-0031-x.
Download citation

References

  1. Ahmed F. Artificial neural networks for diagnosis and survival prediction in colon cancer. Mol Cancer. 4: 29, 2005. Go to original source... Go to PubMed...
  2. Aleksander I, Morton H. An introduction to neural computing. Int Thomson Comput Press, London 1995.
  3. Alkim E, Gürbüz E, Kiliç E. A fast and adaptive automated disease diagnosis method with an innovative neural network model. Neur Networks. 33: 88-96, 2012. Go to original source... Go to PubMed...
  4. Amato F, González-Hernández J, Havel J. Artificial neural networks combined with experimental design: a "soft" approach for chemical kinetics. Talanta. 93: 72-78, 2012. Go to original source... Go to PubMed...
  5. Arnold M. Non-invasive glucose monitoring. Curr Opin Biotech. 7: 46-49, 1996. Go to original source... Go to PubMed...
  6. Atkov O, Gorokhova S, Sboev A, Generozov E, Muraseyeva E, Moroshkina S and Cherniy N. Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters. J Cardiol. 59: 190-194, 2012. Go to original source... Go to PubMed...
  7. Barbosa D, Roupar D, Ramos J, Tavares A and Lima C. Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images. Biomed Eng Online. 11: 3, 2012. Go to original source... Go to PubMed...
  8. Bartosch-Härlid A, Andersson B, Aho U, Nilsson J, Andersson R. Artificial neural networks in pancreatic disease. Br J Surg. 95: 817-826, 2008. Go to original source... Go to PubMed...
  9. Barwad A, Dey P, Susheilia S. Artificial neural network in diagnosis of metastatic carcinoma in effusion cytology. Cytometry B Clyn Cytom. 82: 107-111, 2012. Go to original source... Go to PubMed...
  10. Basheer I, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Meth. 43: 3-31, 2000. Go to original source... Go to PubMed...
  11. Bradley B. Finding biomarkers is getting easier. Ecotoxicology. 21: 631-636, 2012. Go to original source... Go to PubMed...
  12. Brougham D, Ivanova G, Gottschalk M, Collins D, Eustace A, O'Connor R, Havel J. Artificial neural networks for classification in metabolomic studies of whole cells using 1H nuclear magnetic resonance. J Biomed Biotechnol. 2011: 158094, 2011. Go to original source... Go to PubMed...
  13. Catalogna M, Cohen E, Fishman S, Halpern Z, Nevo U, Ben-Jacob E. Artificial neural networks based controller for glucose monitoring during clamp test. PloS One. 7: e44587, 2012. Go to original source... Go to PubMed...
  14. Chan K, Ling S, Dillon T, Nguyen H. Diagnosis of hypoglycemic episodes using a neural network based rule discovery system. Expert Syst Appl. 38: 9799-9808, 2011. Go to original source...
  15. Dayhoff J, Deleo J. Artificial Neur Networks: Opening the Black Box. Cancer. 91: 1615-1635, 2001. Go to original source...
  16. Dazzi D, Taddei F, Gavarini A, Uggeri E, Negro R, Pezzarossa A. The control of blood glucose in the critical diabetic patient: a neuro-fuzzy method. J Diabet Complicat. 15: 80-87, 2001. Go to original source... Go to PubMed...
  17. de Bruijn M, ten Bosch L, Kuik D, Langendijk J, Leemans C, Verdonck-de Leeuw I. Artificial neural network analysis to assess hypernasality in patients treated for oral or oropharyngeal cancer. Logoped Phoniatr Vocol. 36: 168-174, 2011. Go to original source... Go to PubMed...
  18. Dey P, Lamba A, Kumari S, Marwaha N. Application of an artificial neural network in the prognosis of chronic myeloid leukemia. Anal Quant Cytol Histol. 33: 335-339, 2012.
  19. El-Deredy W, Ashmore S, Branston N, Darling J, Williams S, Thomas D. Pretreatment prediction of the chemotherapeutic response of human glioma cell cultures using nuclear magnetic resonance spectroscopy and artificial neural networks Cancer Res. 57: 4196-4199, 1997. Go to PubMed...
  20. Elveren E, Yumuºak N. Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. J Med Syst. 35: 329-332, 2011. Go to original source... Go to PubMed...
  21. Er O, Temurtas F, Tanrikulu A. Tuberculosis Disease Diagnosis Using Artificial Neural Networks. J Med Syst. 34: 299-302, 2008. Go to original source... Go to PubMed...
  22. Fedor P, Malenovsky I, Vanhara J, Sierka W, Havel J. Thrips (Thysanoptera) identification using artificial neural networks. Bull Entomol Res. 98: 437-447, 2008. Go to original source... Go to PubMed...
  23. Fernandez de Canete J, Gonzalez-Perez S, Ramos-Diaz JC. Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes. Comput Meth Progr Biomed. 106: 55-66, 2012. Go to original source... Go to PubMed...
  24. Fernandez-Blanco E, Rivero D, Rabunal J, Dorado J, Pazos A, Munteanu C. Automatic seizure detection based on star graph topological indices. J Neurosci Methods. 209: 410-419, 2012. Go to original source... Go to PubMed...
  25. Gannous AS, Elhaddad YR. Improving an Artificial Neural Network Model to Predict Thyroid Bending Protein Diagnosis Using Preprocessing Techniques. WASET. 50: 124-128, 2011.
  26. Havel J, Peña E, Rojas-Hernández A, Doucet J, Panaye A. Neural networks for optimization of high-performance capillary zone electrophoresis methods. J Chromatogr A. 793: 317-329, 1998. Go to original source...
  27. Ho W-H, Lee K-T, Chen H-Y, Ho T-W, Chiu H-C. Disease-free survival after hepatic resection in hepatocellular carcinoma patients: a prediction approach using artificial neural network. PloS One. 7: e29179, 2012. Go to original source... Go to PubMed...
  28. Karabulut E, Ibrikçi T. Effective diagnosis of coronary artery disease using the rotation forest ensemble method. J Med Syst. 36: 3011-3018, 2012. Go to original source... Go to PubMed...
  29. Kheirelseid E, Miller N, Chang K, Curran C, Hennessey E, Sheehan M, Newell J, Lemetre C, Balls G, Kerin M. miRNA expressions in rectal cancer as predictors of response to neoadjuvant chemoradiation therapy. Int J Colorectal Dis. 2012. Go to original source... Go to PubMed...
  30. Leon BS, Alanis AY, Sanchez E, Ornelas-Tellez F, Ruiz-Velazquez E. Inverse optimal neural control of blood glucose level for type 1 diabetes mellitus patients. J Franklin I. 349: 1851-1870, 2012. Go to original source...
  31. Li Y, Rauth AM, Wu XY. Prediction of kinetics of doxorubicin release from sulfopropyl dextran ion-exchange microspheres using artificial neural networks. Eur J Pharm Sci. 24: 401-410, 2005. Go to original source... Go to PubMed...
  32. Mazurowski M, Habas P, Zurada J, Lo J, Baker J, Tourassi G. Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance. Neural networks. 21: 427-436, 2008. Go to original source... Go to PubMed...
  33. Michalkova V, Valigurova A, Dindo M, Vanhara J. Larval morphology and anatomy of the parasitoid Exorista larvarum (Diptera: Tachinidae), with an emphasis on cephalopharyngeal skeleton and digestive tract. J Parasitol. 95: 544-554, 2009. Go to original source... Go to PubMed...
  34. Molga E, van Woezik B, Westerterp K. Neural networks for modelling of chemical reaction systems with complex kinetics: oxidation of 2-octanol with nitric acid. Chem Eng Process. 39: 323-334, 2000. Go to original source...
  35. Mortazavi D, Kouzani A, Soltanian-Zadeh H. Segmentation of multiple sclerosis lesions in MR images: a review. Neuroradiology. 54: 299-320, 2012a. Go to original source... Go to PubMed...
  36. Mortazavi D, Kouzani AZ, Soltanian-Zadeh H. Segmentation of multiple sclerosis lesions in MR images: a review. Neuroradiology. 54: 299-320, 2012b. Go to original source... Go to PubMed...
  37. Murarikova N, Vanhara J, Tothova A, Havel J. Polyphasic approach applying artificial neural networks, molecular analysis and postabdomen morphology to West Palaearctic Tachina spp. (Diptera, Tachinidae). Bull Entomol Res. 101: 165-175, 2010. Go to original source... Go to PubMed...
  38. Narasingarao M, Manda R, Sridhar G, Madhu K, Rao A. A clinical decision support system using multilayer perceptron neural network to assess well being in diabetes. J Assoc Physicians India. 57: 127-133, 2009. Go to original source... Go to PubMed...
  39. Özbay Y. A new approach to detection of ECG arrhythmias: Complex discrete wavelet transform based complex valued artificial neural network. J Med Syst. 33: 435-445, 2009. Go to original source... Go to PubMed...
  40. Pace F, Savarino V. The use of artificial neural network in gastroenterology: the experience of the first 10 years. Eur J Gastroenterol Hepatol. 19: 1043-1045, 2007. Go to original source... Go to PubMed...
  41. Rodríguez Galdón B, Peña-Méndez E, Havel J, Rodríguez Rodríguez E, Díaz Romero C. Cluster Analysis and Artificial Neural Networks Multivariate Classification of Onion Varieties. J Agric Food Chem: 11435-11440, 2010. Go to original source... Go to PubMed...
  42. Saghiri M, Asgar K, Boukani K, Lotfi M, Aghili H, Delvarani A, Karamifar K, Saghiri A, Mehrvarzfar P, Garcia-Godoy F. A new approach for locating the minor apical foramen using an artificial neural network. Int Endod J. 45: 257-265, 2012. Go to original source... Go to PubMed...
  43. Shankaracharya, Odedra D, Samanta S, Vidyarthi A. Computational intelligence in early diabetes diagnosis: a review. Rev Diabet Stud. 7: 252-262, 2010. Go to original source... Go to PubMed...
  44. Siristatidis C, Chrelias C, Pouliakis A, Katsimanis E, Kassanos D. Artificial neural networks in gyneacological diseases: Current and potential future applications. Med Sci Monit. 16: 231-236, 2010.
  45. Spelt L, Andersson B, Nilsson J, Andersson R. Prognostic models for outcome following liver resection for colorectal cancer metastases: A systematic review. Eur J Surg Oncol. 38: 16-24, 2012. Go to original source... Go to PubMed...
  46. Strike P, Michaeloudis A, Green AJ. Standardizing clinical laboratory data for the development of transferable computer-based diagnostic programs. Clin Chem. 32: 22-29, 1986. Go to original source...
  47. Szolovits P, Patil RS, Schwartz W. Artificial Intelligence in Medical Diagnosis. Ann Intern Med. 108: 80-87, 1988. Go to original source... Go to PubMed...
  48. Tate A, Underwood J, Acosta D, Julià-Sapé M, Majós C, Moreno-Torres A, Howe F, van der Graaf M, Lefournier V, Murphy M, Loosemore A, Ladroue C et al. Development of a decision support system for diagnosis and grading of brain tumours using in vivo magnetic resonance single voxel spectra. NMR Biomed. 19: 411-434, 2006. Go to original source... Go to PubMed...
  49. Thakur A, Mishra V, Jain S. Feed forward artificial neural network: tool for early detection of ovarian cancer. Sci Pharm. 79: 493-505, 2011. Go to original source... Go to PubMed...
  50. Trajanoski Z, Regittnig W, Wach P. Simulation studies on neural predictive control of glucose using the subcutaneous route. Comput Meth Progr Biomed. 56: 133-139, 1998. Go to original source... Go to PubMed...
  51. Uğuz H. A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases. J Med Syst. 36: 61-72, 2012. Go to PubMed...
  52. Verikas A, Bacauskiene M. Feature selection with neural networks. Pattern Recogn Lett. 23: 1323-1335, 2002. Go to original source...
  53. Wilding P, Morgan M, Grygotis A, Shoffner M, Rosato E. Application of backpropagation neural networks to diagnosis of breast and ovarian cancer. Cancer Lett. 77: 145-153, 1994. Go to original source... Go to PubMed...
  54. Yan H, Zheng J, Jiang Y, Peng C, Xiao S. Selecting critical clinical features for heart diseases diagnosis with a real-coded genetic algorithm. Appl Soft Comput. 8: 1105-1111, 2008. Go to original source...
  55. Zupan J, Gasteiger J. Neural networks in chemistry and drug design. Wiley VCH, Weinheim, 380 p. 1999.