Skip to content
Open Access Published by De Gruyter Open Access January 29, 2013

How Significant is the Dynamic Component of the North American Vertical Datum?

  • E. Rangelova EMAIL logo , W. Van Der Wal and M.G. Sideris

Abstract

One of the main current geodetic activities in North America is the definition and establishment of a geoid-based vertical datum that will replace the official CGVD28 and NAVD88 datums in Canada and the USA, respectively. The new datum will also have a time-dependent (dynamic) component required by the targeted one-centimetre accuracy of the datum. Heights of the levelling benchmarks are subject to temporal changes, which contribute to the degradation of the accuracy of the datum and increase the misfit of the geoid heights determined gravimetrically and by GNSS/levelling. The zero level surface, i.e., the geoid, also changes with time, most significantly due to postglacial rebound, climate-induced loss of polar ice masses and mountain glaciers, and hydrology variations. In this study, we examine the possible changes of the datum due to the aforementioned factors. We are mostly concerned with postglacial rebound as it can contribute more than 1 mm per year and more than 1 cm per decade to the geoid change. We also assess the significance of the temporal geoid and benchmark height changes and show that, compared to its current accuracy, the geoid change is only significant after a decade mostly in the flat areas of central Canada.

References

Ali I., 2006, A globally consistent and dynamic Canadian gravity reference frame for a modern heighting system and other applications, MSc thesis, University of York, Toronto.Search in Google Scholar

Argus D.F., Gordon R.G., Heflin M.B., Eanes R.J., Ma C., Willis P., Peltier W.R. and Owen S.E., 2010, The angular velocity of the plates and the velocity of Earth’s center from space geodesy, Geophys. J. Int., 180, 913-960, doi:10.1111/j.1365-246X.2010-x.Search in Google Scholar

Argus D.F. and Peltier W.R., 2010, Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives, Geophys. J. Int., 181, 697-723, doi: 10.1111/j.1365-246X.2010.04562.x.10.1111/j.1365-246X.2010.04562.xSearch in Google Scholar

Biró P., Heck B. and Thông N.C., 1986, On a new approach into the solution of the three-dimensional geodetic-geodynamic boundary value problem, AVN- Int. Edition, 3, 9-21.Search in Google Scholar

Craymer M.R. and Lapelle E., 1997, The GPS Supernet: An Integration of GPS Projects Across Canada, Internal Report, Geodetic Survey Division, Geomatics Canada, Ottawa.Search in Google Scholar

Ekman M., 1989, Impacts of geodynamics phenomena on systems for heights and gravity, Bull. Geod., 63, 281-293.10.1007/BF02520477Search in Google Scholar

Farrell W.E. and Clark J.A., 1976, On postglacial sea-level, Geophys. J., 46.10.1111/j.1365-246X.1976.tb01252.xSearch in Google Scholar

Gardner A.S., Moholdt G., Wouters B., Wolken G.J., Burgess D.O., Sharp M.J, Cogley J.G., Braun C. and Labine C., 2012, Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago, Nature Geosci., 473, 357-160.10.1038/nature10089Search in Google Scholar PubMed

Hayden T., Rangelova E., Sideris M.G. and Véronneau M., 2012, Evaluation of W0 using Canadian tide gauges and GOCE gravity field models, J Geod. Sci. 2, 4, 290-301.10.2478/v10156-012-0003-9Search in Google Scholar

Heiskanen W.A. and Mortiz H., 1967, Physical Geodesy, WH Freeman, San Francisco, USA, Reprint, Technical University, Graz, Austria, 1999.Search in Google Scholar

Huang J. and Véronneau M., 2013, Canadian Gravimetric Geoid Model 2010, J. Geod. (in press).10.1007/s00190-013-0645-0Search in Google Scholar

Jacob T., Wahr J., Gross R. and Swenson S., 2012, Estimating geoid height change in North America: past, present and future, J. Geod. 86, 337-358, DOI 10.1007/s00190-011-0522-7.10.1007/s00190-011-0522-7Search in Google Scholar

Jensen L., 2010, Schätzung der Eismassenbilanz von Grönland mit Hilfe von GRACE und komplementären Daten, Masterarbeit, Universität Bonn.Search in Google Scholar

Kusche J., Schmidt R., Petrovic S. and Rietbroek R., 2009, Decorrelated GRACE Time-Variable Gravity Solutions by GFZ, and their Validation using a Hydrological Model, J. Geod. 83, 903-913, doi:10.1007/s00190-009-0308-3.10.1007/s00190-009-0308-3Search in Google Scholar

Luthcke S.B., Arendt A.A., Rowlands D.D., McCarthy J.J. and Larsen C.F., 2008, Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions, J. Glaciology, 54, 767-777.10.3189/002214308787779933Search in Google Scholar

Luthcke S.B., Zwally H.J., Abdalati W., Rowlands D.D., Ray R.D., Nerem R.S., Lemoine F.G., McCarthy J.J. and Chinn D.S., 2006, Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations, Science, 314, 1,286-1,289.10.1126/science.1130776Search in Google Scholar PubMed

Peltier W.R., 2004, Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE, Ann. Rev. Earth planet. Sci., 32, 111-149.10.1146/annurev.earth.32.082503.144359Search in Google Scholar

Petit G. and Luzum B. (eds.), 2010, IERS Conventions 2010, IERS Technical Note 36. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main.Search in Google Scholar

Poutanen M., Vermeer M. and Mäkinen J., 1996, The permanent tide in GPS positioning, J. Geod., 70, 8, 499-504.10.1007/BF00863622Search in Google Scholar

Rangelova E., Fotopoulos G. and Sideris M.G., 2009, On the use of iterative re-weighting least-squares and outlier detection for empirically modelling rates of vertical displacement, J. Geod. 83, 523-535.10.1007/s00190-008-0261-6Search in Google Scholar

Rangelova E., Fotopoulos G. and Sideris M.G., 2010, Implementing a dynamic geoid as a vertical datum for orthometric heights in Canada, In: IAG Symposia, Vol. 135, Mertikas, S.P.P. (Ed.), Gravity, Geoid and Earth Observation, IAG Commission 2 Gravity Field, Chania, Greece, June 23-27, 2008, Springer, 295-302.10.1007/978-3-642-10634-7_38Search in Google Scholar

Rangelova E. and Sideris M.G., 2008, Contributions of surface measurements and GRACE data to the study of the secular geoid changes in North America, J. Geodyn., 46 (3-5), 131-143, doi: 10.1016/j.jog.2008.03.006.10.1016/j.jog.2008.03.006Search in Google Scholar

Rodell M., Houser P.R., Jambor U., Gottschalck J., Mitchell K., Meng C.-J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J.K., Walker J.P., Lohmann D. and Toll D., 2004, The Global Land Data Assimilation System, Bull. Amer. Meteor. Soc., 85, 3, 381-394.10.1175/BAMS-85-3-381Search in Google Scholar

Smith, D.A., Véronneau, M., Roman, D.R., Huang, J., Wang, Y.M. and Sideris M.G., 2013, Towards the unification of the vertical datum over the North American continent, In: Altamimi and Collilieux (eds.), Reference Frames for Applications in Geosciences, IAG Symposia 138, DOI 10.1007/978-3-642-32998-2_36.10.1007/978-3-642-32998-2_36Search in Google Scholar

Spada G., Barletta V.R., Klemann V., Riva R.E.M., Martinec Z., Gasperini P., Lund B., Wolf D., Vermeersen L.L.A. and King M.A., 2011, A benchmark study for glacial isostatic adjustment codes, Geophys. J. Int., 185, 106-132.10.1111/j.1365-246X.2011.04952.xSearch in Google Scholar

Steffen H., Petrovic S., Muller J., Schmidt R., Wunsch J., Barthelmes F. and Kusche J., 2009, Significance of secular trends of mass variations determined from GRACE solutions, J. Geodyn., 48, 157-165.10.1016/j.jog.2009.09.029Search in Google Scholar

Sun W. and Sjöberg L., 2001, Permanent components of the crust, geoid and ocean depth tides, J. Geodyn., 31, 323-339.10.1016/S0264-3707(00)00031-4Search in Google Scholar

Swenson S. and Wahr J., 2006, Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285.10.1029/2005GL025285Search in Google Scholar

Syed T.H., Famiglietti J.S., Rodell M., Chen J. and Wilson C.R., 2008, Analysis of terrestrial water storage changes from GRACE and GLDAS, Water Resour. Res., 44, W02433, doi:10.1029/2006WR005779.10.1029/2006WR005779Search in Google Scholar

Tamisiea M.E., 2011, Ongoing glacial isostatic contributions to observations of sea level change, Geophys. J. Int., 186, 1,036-1,044.10.1111/j.1365-246X.2011.05116.xSearch in Google Scholar

Tamisiea M.E., Leuliette E.W., Davis J.L. and Mitrovica J.X., 2005, Constraining hydrology and cryospheric mass flux in southeastern Alaska using space-based gravity measurements, Geophys. Res. Lett., 32, L20501, doi:10.1029/2005GL023961.10.1029/2005GL023961Search in Google Scholar

Tapley B.D., Bettadpur S., Ries J.C., Thompson P.F. and Watkins M.M., 2004a, GRACE Measurements of Mass Variability in the Earth System, Science, 305, 503-505, doi: 10.1126/science. 1099192.10.1126/scienceSearch in Google Scholar

Tapley B.D., Bettadpur S., Watkins M. and Reigber C., 2004b, The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920. van der Wal W., Kurtenbach E., Kusche J. and Vermeersen B., 2011, Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment, Geophys. J. Int., doi: 10.1111/j.1365-246X.2011.05206.x.10.1111/j.1365-246X.2011.05206.xSearch in Google Scholar

Véronneau M. and Héroux P., 2006, Canadian Height Reference System Modernization: Rational Status and Plans, Report Natural Resources of Canada, Ottawa, Ontario, Canada, http://www.geod.nrcan.gc.ca/hm/pdf/ geocongres_e.pdf.Search in Google Scholar

Wahr J., DaZhong H. and Trupin A., 1995, Prediction of vertical uplift caused by changing polar ice volume on a viscoelastic Earth, Geophys. Res. Lett., 22, 977-980.10.1029/94GL02840Search in Google Scholar

Wu X., Collilieux X., Altamimi Z., Vermeersen B.L.A., Gross R.S. and Fukumori I., 2011, Accuracy of the International Terrestrial Reference Frame origin and Earth expansion, Geophys. Res. Lett., 38, L13304, doi:10.1029/2011GL047450.10.1029/2011GL047450Search in Google Scholar

Wu P. and Peltier W.R., 1984, Pleistocene deglaciation and the earth’s rotation: a new analysis, Geophys. J. R. Astr. Soc., 76, 753-792.10.1111/j.1365-246X.1984.tb01920.xSearch in Google Scholar

Wu X., Ray J. and van Dam T., 2012, Geocenter motion and its geodetic and geophysical implications, J. Geodyn., 58, 44-61.10.1016/j.jog.2012.01.007Search in Google Scholar

Published Online: 2013-01-29
Published in Print: 2012-12-1

This content is open access.

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.2478/v10156-012-0005-7/html
Scroll to top button