Skip to content
Open Access Published by De Gruyter Open Access January 29, 2013

Regional geoid-model-based vertical datums – some Australian perspectives

  • W. E. Featherstone EMAIL logo , M. S. Filmer , S. J. Claessens , M. Kuhn , C. Hirt and J. F. Kirby

Abstract

This article summarises some considerations surrounding a geoid-model-based vertical datum that have to be thought through before its implementation and adoption. Our examples are based on many Australian and some South-East Asian experiences, but these probably also apply elsewhere. The key considerations comprise data quality and availability, politics, and difficulties that users may encounter when adopting quite a different approach to height determination. We advocate some form of new vertical datum to replace the Australian Height Datum, but the exact type (whether using levelling or geoid, or some combination of both) still needs to be decided. We are not specifically opposed to the adoption of a geoid model as the vertical datum, but it is possibly more challenging than appears initially, and may even deter some users that are already well served by levelling-based vertical datums.

References

Amos M. J. and Featherstone W. E., 2009, Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations, J Geod., 83, 1, 57-68, DOI: 10.1007/s00190-008-0232-y.10.1007/s00190-008-0232-ySearch in Google Scholar

Andersen O. B. and Knudsen P., 2000, The role of satellite altimetry in gravity field modelling in coastal areas, Phys. Chem. Earth - Pt. A, 25, 1, 17-24, DOI: 10.1016/S1464-1895(00)00004-1.10.1016/S1464-1895(00)00004-1Search in Google Scholar

Andersen O. B., Knudsen P. and Berry P. A. M., 2010, The DNSC08GRA global marine gravity field from double retracked satellite altimetry, J Geod., 84, 3, 191-199, DOI: 10.1007/s00190-009-0355-9.10.1007/s00190-009-0355-9Search in Google Scholar

Arabelos D. and Tscherning C. C., 2001, Improvements in height datum transfer expected from the GOCE mission, J Geod., 75, 5-6, 308-312, DOI: 10.1007/s001900100187.10.1007/s001900100187Search in Google Scholar

Baran I., Kuhn M., Claessens S. J., Featherstone W. E., Holmes S. A. and Vaníček P., 2006, A synthetic Earth gravity model designed specifically for testing regional gravimetric geoid determination algorithms, J Geod., 80, 1, 1-16, DOI: 10.1007/s00190-005-0002-z.10.1007/s00190-005-0002-zSearch in Google Scholar

Claessens S. J., Hirt C., Amos M. J., Featherstone W. E. and Kirby J. F., 2011, The NZGeoid09 model of New Zealand, Surv. Rev., 43, 319, 2-15, DOI: 10.1179/003962610X12747001420780.10.1179/003962610X12747001420780Search in Google Scholar

Deng X. L., Featherstone W. E., Hwang C. and Berry P. A. M., 2002, Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia, Mar.10.1080/01490410214990Search in Google Scholar

Geod., 25, 4, 249-271, DOI: 10.1080/01490410290051572.Search in Google Scholar

Drinkwater M. R., Floberghagen R., Haagmans R., Muzi D. and Popescu A., 2003, GOCE: ESA’s first Earth explorer core mission, Space Sci. Rev., 108, 1-2, 419-432, DOI: 10.1023/A:1026104216284.10.1023/A:1026104216284Search in Google Scholar

Ebner R. and Featherstone W. E., 2008, How well can online GPS PPP post-processing services be used to establish geodetic survey control networks?, J Appl. Geod., 2, 3, 149-157, DOI: 10.1515/JAG.2008.017.10.1515/JAG.2008.017Search in Google Scholar

Ekman M., 1989, Impacts of geodynamic phenomena on systems for height and gravity, Bull. Géod., 63, 3, 281-296, DOI: 10.1007/BF02520477.10.1007/BF02520477Search in Google Scholar

Featherstone W. E., 1998, Do we need a gravimetric geoid or a model of the base of the Australian Height Datum to transform GPS heights?, Austral. Surv., 43, 4, 273-280.10.1080/00050350.1998.10558758Search in Google Scholar

Featherstone W. E., 2004, Evidence of a north-south trend between AUSGeoid98 and the AHD in southwest Australia, Surv. Rev., 37, 291, 334-343, DOI: 10.1179/003962604791482540.10.1179/003962604791482540Search in Google Scholar

Featherstone W. E., 2008, GNSS-based heighting in Australia: current, emerging and future issues, J Spatial Sci., 53, 2, 115-133.10.1080/14498596.2008.9635153Search in Google Scholar

Featherstone W. E., 2010, Satellite and airborne gravimetry: their role in geoid determination and some suggestions, in: Lane R (ed) Airborne Gravity 2010, Geoscience Australia, pp 58-70.Search in Google Scholar

Featherstone W. E. and Filmer M. S., 2008, A new GPSbased evaluation of distortions in the Australian Height Datum in Western Australia, J Royal Soc. W. Austral., 91, 2, 199-206.Search in Google Scholar

Featherstone W. E. and Filmer M. S., 2012, The north-south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic topography, J Geophys. Res. - Oceans 117, C08035, DOI: 10.1029/2012JC007974.10.1029/2012JC007974Search in Google Scholar

Featherstone W. E. and Stewart M. P., 1998, Possible evidence for distortions in the Australian Height Datum in Western Australia, Geom. Res. Australasia, 68, 1-12.Search in Google Scholar

Featherstone W. E., Kirby J. F., Hirt C., Filmer M. S., Claessens S. J., Brown N. J., Hu G. and Johnston G. M., 2011, The AUSGeoid09 model of the Australian Height Datum, J Geod., 85, 3, 133-150, DOI: 10.1007/s00190-010-0422-2.10.1007/s00190-010-0422-2Search in Google Scholar

Filmer M. S. and Featherstone W. E., 2009, Detecting spiritlevelling errors in the AHD: recent findings and some issues for any new Australian height datum, Austral. J Earth Sci., 56, 4, 559-569, DOI: 10.1080/08120090902806305.10.1080/08120090902806305Search in Google Scholar

Filmer M. S. and Featherstone W. E., 2012, Three viable options for a new Australian vertical datum, J Spatial Sci., 57, 1, 19-36, DOI: 10.1080/14498596.2012.679248.10.1080/14498596.2012.679248Search in Google Scholar

Gerlach C. and Rummel R., 2012, Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach, J Geod., DOI: 10.1007/s00190-012-0579-y.10.1007/s00190-012-0579-ySearch in Google Scholar

Gruber T., Gerlach C. and Haagmans R., 2012, Intercontinental height datum connection with GOCE and GPS-levelling data, J Geod. Sci. (this issue) Heck B., 1990, An evaluation of some systematic error sources affecting terrestrial gravity anomalies, Bull. Géod., 64, 88-108, DOI: 10.1007/BF02530617.10.1007/BF02530617Search in Google Scholar

Hipkin R. G., 2000, Modelling the geoid and sea-surface topography in coastal areas, Phys. Chem. Earth - Pt. A, 25, 1, 9-16, DOI: 10.1016/S1464-1895(00)00003-X Hirt C., Denker H., Flury J., Lindau A. and Seeber G., 2007, Astrogeodetic validation of gravimetric quasigeoid models in the German Alps - first results, Proc. First Int. Symp. of the International Gravity Field Service, Harita Dergisi, Ankara, Turkey, pp 84-89.Search in Google Scholar

Hirt C., Bürki B., Somieski A. and Seeber G., 2010a, Modern determination of vertical deflections using digital zenith cameras, J Surv. Eng., 136, 1, 1-12. DOI: 10.1061/_ASCE_SU.1943-5428.0000009.Search in Google Scholar

Hirt C., Featherstone W. E. and Marti U., 2010b, Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data, J Geod., 84, 9, 557-567, DOI: 10.1007/s00190-010-0395-1.10.1007/s00190-010-0395-1Search in Google Scholar

Hwang C., Guo J., Deng X., Hsu H. Y. and Liu Y., 2006, Coastal gravity anomaly from retracked Geosat/GM altimetry: improvement, limitation and the role of airborne gravity data, J Geod., 80, 4, 204-216, DOI: 10.1007/s00190-006-0052-x.10.1007/s00190-006-0052-xSearch in Google Scholar

Kearsley A. H. W., Ahmad Z. and Chan A., 1993, National height datums, levelling, GPS heights and geoids, Austral. J Geod., Photogram. and Surv., 59, 53-88.Search in Google Scholar

Kearsley A. H. W., Rush G. J. and O’Donnell P. W., 1988, The Australian Height Datum - problems and proposals, Austral. Surv., 34, 4, 363-380. Mäkinen J. and Ihde J., 2009, The permanent tide in height systems, in Sideris, M. G. (ed.) Observing Our Changing Earth, Springer, Heidelberg, pp 81-87, DOI: 10.1007/978-3-540-85426-5_10.10.1007/978-3-540-85426-5_10Search in Google Scholar

Morgan P., 1992, An analysis of the Australian Height Datum: 1971, Austral. Surv., 37, 1, 46-63.10.1080/00050326.1992.10438774Search in Google Scholar

NGS (2007) The GRAV-D project: gravity for the redefinition of the American vertical datum, Report 676, National Geodetic Survey, Washington, http://www.ngs.noaa. gov/GRAV-D/pubs/GRAV-D_v2007_12_19.pdf Pavlis N. K., Holmes S. A., Kenyon S. C. and Factor J. K., 2012, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J Geophys. Res. - Solid Earth, 117, B04406, DOI: 10.1029/2011JB008916.10.1029/2011JB008916Search in Google Scholar

Poutanen M., Vermeer M. and Mäkinen, J., 1996, The permanent tide in GPS positioning, J Geod., 70, 8, 499-504, DOI: 10.1007/BF00863622.10.1007/BF00863622Search in Google Scholar

Roelse A., Granger H. W. and Graham J. W., 1975, The adjustment of the Australian levelling survey 1970-1971, Technical Report 12 (second edition), Division of National Mapping, Canberra, Australia.Search in Google Scholar

Rummel R. and Teunissen P. J. G., 1988, Height datum definition, height datum connection and the role of the geodetic boundary value problem, Bull. Géod., 62, 4, 477-498, DOI: 10.1007/BF02520239.10.1007/BF02520239Search in Google Scholar

Sandwell D. T. and Smith W. H. F., 2009, Global marine gravity from retracked Geosat and ERS-1 altimetry: ridge segmentation versus spreading rate, J Geophys. Res. - Solid Earth, 114, B01411, DOI: 10.1029/2008JB006008.10.1029/2008JB006008Search in Google Scholar

Sjöberg L. E., 2005, A discussion on the approximations made in the practical implementation of the remove-computerestore technique in regional geoid modelling, J Geod., 78, 11-12, 645-653, DOI: 10.1007/s00190-004-0430-1.10.1007/s00190-004-0430-1Search in Google Scholar

Tapley B. D., Bettadpur S., Watkins M. and Reigber C., 2004, The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, DOI: 10.1029/2004GL019920.10.1029/2004GL019920Search in Google Scholar

Valty P., Duquenne H. and Panet I., 2012, Auvergne dataset: testing several geoid computation methods, in: Kenyon, S., Pacino, M. C. and Marti, U. (eds.), Geodesy for Planet Earth, Springer, Heidelberg, pp 465-472, DOI: 10.1007/978-3-642-20338-1_56.10.1007/978-3-642-20338-1_56Search in Google Scholar

Vaníček P., 1991, Vertical datum and NAVD88, Surv. Land Info. Sys., 51, 2, 83-86.Search in Google Scholar

Vaníček P., Castle R. O. and Balazs E.I., 1980, Geodetic leveling and its applications, Rev. Geophys. Space Phys., 18, 2, 505-524, DOI: 10.1029/RG018i002p00505.10.1029/RG018i002p00505Search in Google Scholar

Vaníček P., Kingdon R. and Santos M., 2012, Geoid versus quasi-geoid: a case of physics versus geometry, Contrib. Geophys. Geod., 42, 1, 101-119.10.2478/v10126-012-0004-9Search in Google Scholar

Vermeer M., 1998, The geoid as a product, Rep. 98(4), Finnish Geodetic Institute, Helsinki, Finland, pp. 63-69.Search in Google Scholar

Véronneau M., Duval R. and Huang J., 2006, A gravimetric geoid model as a vertical datum in Canada, Geomatica, 60, 2, 165-172.Search in Google Scholar

Wang Y. M., Saleh J., Li X. and Roman D. R., 2012, The US Gravimetric Geoid of 2009 (USGG2009): Model development and evaluation, J Geod., 86, 3, 165-180, DOI: 10.1007/s00190-011-0506-7.10.1007/s00190-011-0506-7Search in Google Scholar

Wellman P. and Tracey R., 1987, Southwest seismic zone of Western Australia: measurement of vertical ground movements by repeat levelling and gravity measurements, BMR J Austral. Geol. Geophys., 10, 225-232.Search in Google Scholar

Published Online: 2013-01-29
Published in Print: 2012-12-1

This content is open access.

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.2478/v10156-012-0006-6/html
Scroll to top button