Details

Title

Loudness Assessment of Musical Tones Equalized in A-weighted Level

Journal title

Archives of Acoustics

Yearbook

2011

Volume

vol. 36

Issue

No 2

Authors

Keywords

loudness perception ; A-weighted level equalization ; wind instrument sounds

Divisions of PAS

Nauki Techniczne

Coverage

239-250

Publisher

Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10168-011-0019-7

Source

Archives of Acoustics; 2011; vol. 36; No 2; 239-250

References

Benade A. (1991), Fundamentals of musical acoustics. ; Campbell M. (2001), The musician's guide to acoustics. ; Gelfand S. (2004), Hearing: an introduction to psychological and physiological acoustics, fourth edition, revised and expanded. ; Grey J. (1975), <i>An exploration of musical timbre</i>, Ph.D. Thesis, Stanford University, Stanford. ; Hajda J. (1997), Perception and cognition of music, 253. ; Harajda H. (1993), Microstructure of sound: formants in the dynamical spectra of violin sounds, Archives of Acoustics, 18, 1, 17. ; Hellman R. (1987), Why can a decrease in db(a) produce an increase in loudness?, The Journal of the Acoustical Society of America, 82, 5, 1700, doi.org/10.1121/1.395162 ; Iverson P. (1995), Auditory stream segregation by musical timbre: effects of static and dynamic acoustic attributes, Journal of Experimental Psychology, Human Perception and Performance, 21, 4, 751, doi.org/10.1037/0096-1523.21.4.751 ; Iverson P. (1993), Isolating the dynamic attributes of musical timbre, The Journal of the Acoustical Society of America, 94, 5, 2595, doi.org/10.1121/1.407371 ; Kendall R. (1991), Perceptual scaling of simultaneous wind instrument timbres, Music Perception, 8, 4, 369. ; Kendall R. (1993), Identification and blend of timbres as a basis for orchestration, Contemporary Music Review, 9, 51, doi.org/10.1080/07494469300640341 ; Kendall R. (1999), Perceptual and acoustical features of natural and synthetic orchestral instrument tones, Music Perception, 16, 3, 327. ; Kiess H. (1985), Psychological Research Methods: A Conceptual Approach. ; Kostek B. (2001), Representing musical instrument sounds for their automatic classification, Journal of the Audio Engineering Society, 49, 9, 768. ; Kostek B. (1997), Parametric representation of musical sounds, Archives of Acoustics, 22, 1, 3. ; Leek M. (2001), Adaptive procedures in psychophysical research, Perception & Psychophysics, 63, 8, 1279, doi.org/10.3758/BF03194543 ; Marozeau J. (2003), The dependency of timbre on fundamental frequency, The Journal of the Acoustical Society of America, 114, 5, 2946, doi.org/10.1121/1.1618239 ; Meyer J. (2009), Acoustics and the performance of music: manual for acousticians, audio engineers, musicians, builders of musical instruments and architects. ; Miśkiewicz A. (1992), Music vs noise: a comparison of loudness estimates, Archives of Acoustics, 17, 2, 203. ; Miśkiewicz A. (1994), Loudness level versus sound-pressure level: a comparison of musical instruments, The Journal of the Acoustical Society of America, 96, 6, 3375, doi.org/10.1121/1.411448 ; Moore B. (1989), An introduction to the psychology of hearing. ; Papanikolaou G. (2009), Multiple dichotomies in timbre research, Archives of Acoustics, 34, 2, 127. ; Sandell G. (1995), Roles for spectral centroid and other factors in determining "blended" instruments pairings in orchestration, Music Perception, 13, 2, 209. ; Silva I. (2006), Effect of adaptive psychophysical procedure on loudness matches, The Journal of the Acoustical Society of America, 120, 4, 2124, doi.org/10.1121/1.2336747 ; Skovenborg E. (2004), Evaluation of different loudness models with music and speech material, null. ; Taylor M. (1967), Pest: efficient estimates on probability functions, The Journal of the Acoustical Society of America, 41. ; Zwicker E. (1990), Psychoacoustics: facts and models.
×