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Abstract 

The paper presents a research on machined surface roughness in face milling of aluminium 
alloy on a low power cutting machine. Based on the results of the central-composite plan of 
experiment with varying machining parameters (number of revolutions - spindle speed n, feed 
rate f and depth of cut a) and the roughness observed as output variable, two models have 
been developed: a regression model and a model based on the application of neural networks 
(NN model). The regression model (coefficient of determination of 0.965 or 0.952 adjusted) 
with insignificant lack of fit, provides a very good fit and can be used to predict roughness 
throughout the region of experimentation. Likewise, the model based on the application of 
neural networks approximates well the experimental results with the level of RMS (Root 
Mean Square) error in the phase of validation of 4.01 %. 
(Received in February 2012, accepted in March 2013. This paper was with the authors 4 months for 2 revisions.) 
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1. INTRODUCTION 
 

Surface quality of machined parts is often one of the most specified customer requirements 
and essential exploitation request where major significant indicator of surface quality is 
surface roughness. The surface roughness is affected by many controlled process parameters 
(including cutting speed, depth of cut and feed rate) and uncontrolled process parameters 
(cutting conditions, material properties of tool and workpiece, workpiece quality, tool 
geometry, tool machine vibrations, tool wear etc.) that are difficult to achieve and 
continuously monitor [1-7]. Surface quality, respectively surface roughness, has an important 
influence on technological time and costs, i. e. productivity [8]. On this basis, many scientific-
research projects and scientific papers of experimental investigations which are largely based 
on previously conducted and planned experiments aim at optimizing cutting parameters, 
modelling and predicting surface roughness to obtain a desired level of surface quality of 
machined products [9]. In this sense, many statistical (regression) models and models based 
on the application of artificial intelligence models have been developed. 
      In paper [10] two modelling approaches, regression and Artificial Neural Network (ANN) 
are applied to predict minimum surface roughness in the end milling machining process. Both 
models predicted 1-1.5 % lower values of roughness with regard to experimental values. In 
paper [11] the authors apply the same methods, and considering the input parameters of 
cutting speed, feed rate and depth of cut neural networks achieved better prediction of surface 
roughness. After the previously conducted Taguchi plan of experiment, in paper [12] the 
authors developed different types of neural networks (radial base, feed forward and 
generalized regression) which evaluated surface roughness after face milling of Al alloy 
7075-T7351 based on input values (cutting speed, feed per tooth, axial depth of cut, chip’s 
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width, and chip’s thickness). The best results were achieved by the feed forward neural 
network. The investigation also showed that the surface roughness was most affected by the 
chip thickness and cutting speed. Paper [13] deals with the surface roughness modelling in 
accordance with the conducted full factorial design of experiments in end milling of AISI 
1040 steel material with TiAlN solid carbide tools under wet conditions. ANN based on 
Back-propagation learning algorithm is used to develop the surface roughness model. With 
the support of NN and the application of genetic algorithms (GA) the optimization of the 
machining regime was performed resulting in the roughness reduction by nearly 12 %, the 
machining time by about 20 %, and the roughness prediction model proved applicable with an 
error of about 3 %. 
      In papers [14-16] the authors model the surface roughness in end-milling of 6061 
aluminium. The authors in paper [14] carry out the machining with high speed steel (HSS) and 
carbide tools under dry and wet conditions and they have developed a mathematical model 
using response surface methodology integrated with GAs. In paper [15] the authors apply 
adaptive neuro-fuzzy inference system (ANFIS) and GA. The model input variables are the 
spindle speed, feed rate, depth of cut and the workpiece-tool vibration amplitude. The ANFIS 
with GAs are trained with a subset of experimental data. The obtained model is tested using 
the set of validation data (obtained by experiment). The results show improvement in 
comparison with the other soft computing techniques like genetic programming (GP) and 
ANN. The authors in [16] model surface roughness by the application of multivariate 
regression analysis (MRA), ANN and ANFIS. The model input variables are the same as in 
paper [15]. The results of all three methods are satisfactory but the test performance of ANFIS 
is better than ANN and MRA. In paper [17] the authors analyse the influence of cutting speed, 
feed, and depth of cut on surface roughness in face milling process. For roughness modelling, 
based on the data collected by the planned experiment, they apply three methodologies: 
regression analysis, support vector machines and Bayesian neural network (BNN). All three 
models have the relative prediction error below 8 %. The BNN shows the best prediction of 
surface roughness with the average relative prediction error of 6.1 %. Feed exerts the 
strongest influence on roughness. The authors in paper [18] propose the application of two 
different hybrid intelligent techniques, ANFIS and radial basis function neural network- fuzzy 
logic (RBFNN-FL) for the prediction of surface roughness in end milling. In addition to 
speed, feed, depth of cut, which are frequently used as the model input parameters, the 
vibrations occurring during machining are also considered. Both hybrid techniques proved 
quicker and more accurate with regard to the application of individual techniques. An in-
process surface roughness adaptive control system in end milling operations was researched 
and developed in the paper [19]. The authors developed two subsystems: the multiple-
regression-based in-process surface roughness evaluation (ISRE) subsystem for predicted 
surface roughness during the finish cutting and the in-process adaptive parameter control 
subsystem. As variables these systems use machine cutting parameters such as feed rate, 
spindle speed, and depth of cut, and cutting force signals detected by a dynamometer sensor 
ISRE subsystem predicted surface with an accuracy of 91.5 %. 
      Modelling of surface roughness and waviness (surface texture) by the application of 
regression analysis for various cutting conditions after face-milling is dealt with in paper [20]. 
The roughness of face-milled surfaces is also influenced by tool service time. The authors in 
[21] have developed a regression model showing that roughness is a quadratic function of tool 
service time. The authors [22] present a technique developed using hybridization of kernel 
principal component analysis based nonlinear regression and GAs to predict the optimum 
values of the radial rake angle, speed and feed rate in end milling machining process so that 
the estimated surface roughness is as low as possible. The proposed technique gives a more 
accurate prediction model than the one obtained by the ordinary linear regression approach. 
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Compared with the experiment data and RSM, the described technique reduces the minimum 
surface roughness by about 45.3 % and 54.2 %. El-Sonbaty et al. [23] predicted a surface 
roughness using a feed forward back propagation neural network with different structures. 
Input variables are: spindle speed, feed, depth of cut, and pre-tool wear vibration level. There 
are two output variables: fractal dimension parameters and vertical scaling parameter, which 
characterize the machined surface profile. The best structure predicts the roughness profile 
with an accuracy of 98 %. Zain et al. [24] presented ANN for surface roughness prediction 
using two level full factorial designs. The authors concluded that minimum surface roughness 
can be obtained with high cutting speed, low feed rate, and rake angle. The paper [25] 
presents a new approach to determine the optimal cutting parameters leading to the minimum 
surface roughness in face milling of X20Cr13 stainless steel, by integrating ANN and 
harmony search algorithm (HS). Palani and Natarajan [26] developed a noncontact machine 
vision system integrated with an ANN for surface roughness prediction of end-milled parts. A 
self-organized map neural network uses five input variables: cutting speed, feed rate, depth of 
cut, and particular characteristics of the photograph, while surface roughness is the output 
variable. This system's advantage is the surface roughness prediction in real time and its 
accuracy of prediction is 97.53 %. Authors in [27] emphasize the importance of ergonomics 
in tooling operations. Bruni et al. [28] use feed forward ANN and multiple regression models 
for surface roughness prediction and tool wear control in AISI 420B stainless steel end 
milling under various cutting conditions: dry, wet, and minimum lubricant quantity-MQL. 
The MQL cutting results in the lowest surface roughness and the least tool wear, at high speed 
cutting in particular. 
      The investigation presented in this paper is aimed at the machined surface roughness 
modelling in end milling of aluminium alloy on a low power milling machine. Investigations 
on such machines are not common and the cutting quality greatly depends on the 
technologist's and the machine operator's experience. 
 
2. EXPERIMENTAL 
 
The material of the specimens is the aluminum alloy Al 6061 (AlMg1SiCu); the chemical 
composition is given in Table I. The tested samples of 70×30×30 mm were previously cut 
from the sheet on a cutting machine with cooling to ensure the structure and properties of 
material unchanged. Experimental machining was performed on a vertical CNC milling 
machine, type PC Mill 105 using a high speed steel milling cutter of diameter 40 mm, HSS 
MAYESTAG 40×32×16 N3074-Q45 (commercial name) with 6 cutting edges. The tool 
was preset and measured before use on a measuring machine so that all the cutting edges were 
of the same height. 
      The output variable i.e. surface roughness Ra, was measured using a device Talysurf 
Surtronic duo. This is a contact diamond stylus profiler. For this kind of device, a diamond 
stylus is moved across the peaks and valleys of the surface to be measured. During the 
measurement, room temperature was 20 oC. 
 

Table I: Chemical composition of aluminum alloy. 

Element Al Cr Cu Fe Mg Mn Si Ti Zn 
wt, % 97.4 0.3 0.2 0.1 1.0 0.1 0.6 0.1 0.2 

 
      Prior to the main experiment, two pre-experiments were conducted to try the experimental 
and measurement technique, as well as to define the levels of three quantitative factors. It was 
concluded that three factors will be varied over the following ranges: 
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- depth of cut – from 0.3 to 0.8 mm, 
- feed rate – from 50 to 100 mm/min, 
- number of revolutions (spindle speed) – from 500 to 1000 rev/min. 

      The next step was to choose the experimental design. The central composite design (CCD) 
was chosen. These designs are often used for fitting the second-order model (with quadratic 
term) in the frame of Response surface methodology, but they can be used independently too. 
It consists of 2k factorial (k – number of factors) with nf = 2k number of factorial runs, 2k axial 
runs and nc center runs. For this study, the number of factors k is 3, so the number of factorial 
runs nf is 8, the number of replications in the center is 6, and there are 6 axial runs. Therefore, 
the total number of runs is 20. The parameter , the position of the axial runs from the center 
of experiment is 1.68179 (according to the nf

1/4) [29], and this design is called rotatable CCD. 
      Table II presents five levels of three factors A, B and C (factor A: depth of cut a, factor B: 
feed rate f and factor C: number of revolutions n). 
      The experiment is performed taking into account the basic principles of experimental 
design (randomization and replication). For the investigation in this paper, the third principle, 
blocking was not used because the machining of the specimens was conducted on a single 
machine, it was the same operator, measuring the response was carried out by one person, the 
experiment was performed on the same day and the material of specimens was taken from the 
same batch. 
 

Table II: The levels of the factors. 

Factor Units 
Levels - coded and actual 

-1.68179 -1 0 +1 +1.68179 

A (a) mm 0.13 0.30 0.55 0.80 0.97 

B (f) mm/min 32.96 50.00 75.00 100.00 117.04 

C (n) rev/min 329.55 500.00 750.00 1000.00 1170.45 

 
3. REGRESSION MODELLING 
 
Table III shows the results of the experiment (the last column presents mean or average 
response of five repeated measurements). 
      The specimens are marked from 1 to 20 according to the standard run order, i.e. 
conventional schedule for CCD. It means the specimens numbered from 1 to 8 are the points 
of factorial design, the specimens numbered from 9 to 14 are the axial points and finally, the 
specimens numbered from 15 to 20 are the points at the center of design (6 replicates). It can 
be seen that the specimen number 8 (factorial point) was first machined and the specimen 
number 4 (also factorial point) was the last. 
      Statistical analysis of the measured response (given in Table III), as well as 
randomization, were conducted using the licensed software Design Expert (version DX8, 
8.0.7.1, Stat-Ease, Inc. Minneapolis, 2010). The minimum value of the response is 0.52 m 
and the maximum value amounts to 7.11 m. The mean is 5.1 m, and the sample standard 
deviation is 2.04 m (i.e. sample variance is 4.18). The full quadratic regression model is 
obtained and the terms A, A2, AB and AC are removed because they are not significant in the 
model. Therefore, Table IV presents the Analysis of variance for the reduced model. 
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Table III: The results of the experiment. 

Standard 
Order or Mark 
of specimen 

Run 
Factor 1 

A: Depth of 
cut (mm) 

Factor 2 
B: Feed rate 
(mm/min) 

Factor 3 
C: Number of revolutions, 

(rev/min) 

Response- 
Roughness Ra, 

(m) 
8 1 0.80 100 1000 5.82 

20 2 0.55 75 750 5.21 
11 3 0.55 32.96 750 0.52 
9 4 0.13 75 750 5.86 
3 5 0.30 100 500 7.11 

13 6 0.55 75 329.55 6.11 
2 7 0.80 50 500 5.14 
6 8 0.80 50 1000 0.83 

12 9 0.55 117.04 750 6.97 
10 10 0.97 75 750 5.76 
18 11 0.55 75 750 5.85 
5 12 0.30 50 1000 1.15 

15 13 0.55 75 750 6.21 
1 14 0.30 50 500 6.25 

14 15 0.55 75 1170.45 2.75 
19 16 0.55 75 750 6.18 
7 17 0.30 100 1000 6.19 

17 18 0.55 75 750 5.81 
16 19 0.55 75 750 5.76 
4 20 0.80 100 500 6.70 

 
Table IV: Analysis of variance for the reduced model. 

Source Sum of 
Squares, SS df Mean 

Square, MS 
F 

Value 
p-value 

Prob > F 
Model 76.605 5 15.321 76.457 < 0.0001 
B-Feed rate 39.713 1 39.713 198.185 < 0.0001 
C-Number of 
revolutions 20.841 1 20.841 104.005 < 0.0001 

BC 7.258 1 7.258 36.220 < 0.0001 
B2 6.732 1 6.732 33.594 < 0.0001 
C2 2.768 1 2.768 13.816 0.0023 
Residual 2.805 14 0.200   
Lack of Fit 2.145 9 0.238 1.805 0.2671 
Pure Error 0.660 5 0.132   
Cor Total 79.410 19    

 
      The mean square for the regression is 15.321 and F ratio amounts to 76.457 (15.321 
divided by 0.2) which is higher than the critical F ratio (2.96). Thus, the null hypothesis can 
be rejected and the alternative one can be accepted. It means that at least one of the regression 
variables contributes significantly to the model. The model terms B, C, BC, B2 and C2 are 
significant; p values for the F statistics (198.185; 104.005; 36.220; 33.594 and 13.816) are 
much smaller than the probability of type I error 0.05, i.e. the significance level. As 
previously mentioned, the terms A, AB, AC and A2 are not significant (p values for the F 
statistics (1.87; 0.24; 0.37 and 0.20) were higher than the probability of type I error 0.05). It is 
not shown in Table IV; it is concluded from the analysis of variance for the full model. The 
testing of Lack of fit is also conducted. For our experiment, this value is not significant, 
because the F statistic (0.238/0.132=1.805) is smaller than the critical one of 4.77. This is 
good. Finally, the addition of center points to our design allowed us to estimate pure error 
because of the replications. The coefficient of multiple determination R2 amounts to 0.965 and 
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presents the portion of explained variability in total variability; it is calculated from Eq. (1); 
SS means Sum of Squares. 
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      Adjusted coefficient of determination R2
adj is equal to 0.952 and we can use it because it is 

not dependent on the number of variables added to the regression model (R2
adj is calculated 
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      Since the ordinary and adjusted coefficients of determination do not differ significantly, 
we can conclude that probably nonsignificant terms are not included in the model. The 
coefficients of determination of the model obtained in this way are high (0.965 or 0.952 
adjusted) which is very good, as well as the insignificant lack of fit. Therefore, the conclusion 
can be drawn that the regression model provides a very good fit and can be used to predict 
roughness throughout the region of experimentation. The prediction error sum of squares 
PRESS is 8.35, and consequently R2 for prediction in our experiment amounts to 0.89. These 
two values are the measures of predicting the response in a new experiment [29]. 
      The coefficient of variation C.V. % is the portion of error (i.e. standard deviation) in the 
mean and is equal to 8.76 %. The reduced model in terms of coded factors is presented by Eq. 
(3) (see the coded scale of factors in Table II). 

22 44.068.095.024.171.187.5 CBCBCBRa       (3) 

      The reduced model in terms of natural (actual) factors is presented by Eq. (4) (see the 
actual levels of factors in Table II). 

22 00000697.00011.000015.00059.0117.0987.2 nfnfnfRa        (4) 

      Fig. 1 presents the response surface, where roughness is plotted versus the levels of feed 
rate and the number of revolutions, with a constant value of depth of cut (0.55 mm). It can be 
seen that with higher values of the number of revolutions and lower values of feed rate, the 
values of roughness are lower, i.e. better. Minimum roughness of 0.86 m is achieved at the 
high level of number of revolutions and at the low level of feed rate.   
 

 
 
Figure 1: Response surface plot for the regression model. 
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      Model adequacy checking is also performed. Normality assumption (the residuals can be 
described by a normal distribution, that is, the residuals are normally and independently 
distributed random variables with the mean zero) is checked using the normal probability plot. 
From the visual examination of the normal probability plot (Fig. 2a) we can see that the 
cumulative frequency or probability of internally studentized residuals falls approximately 
along a straight line. There is only one moderate violation which does not affect the analysis 
of variance. Fig. 2b shows the relationship between the predicted values calculated by the 
model (by using Eqs. (3) and (4)) and those obtained by the experiment (actual). It can be 
seen that those values correlate very well. The value of roughness at the center point 
calculated by the models in Eqs. (3) and (4) equals 5.87 m, while the average experimental 
value of five runs at the center point (runs no. 2, 11, 13, 18 and 19; Table III) amounts to 5.84 
m. There is no significant difference between the model and the experiment. 
      Finally, a confirmation run is carried out to test the regression model, that is, to predict 
new response observation at the point 0x . A confirmation run is performed with the following: 

- factor A – coded value of 1.68 or actual value of 0.97 mm, 
- factor B – coded value of 1 or actual value of 100 mm/min, 
- factor C – coded value of -1 or actual value of 500 rev/min. 

 

 
 
Figure 2: a) Normal probability plot of residuals;  
 b) Predicted response (roughness) related to the measured response. 
 
      The predicted value of the response at that point is 6.74 m – it is calculated from the 
regression model (Eqs. (3) or (4)). According to the Eq. (5) [29], a 100.(1-) per cent 
prediction interval for a new observation y0 can be calculated:  
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where: 
)(ˆ 0xy   – value of response predicted by the regression model at new observation point 0x ,  

t/2,m–r 
– value of variable of t distribution with m – r degrees of freedom, for defined  

    probability  of the type I error,  
m  – number of runs,   
 r  – number of regression model terms, 

2̂  – unbiased estimator of variance, 
X   – matrix of the levels of the independent variables, 

'X  – transpose of the matrix X . 
 
The interval within which the new observation would be expected to lie is from 5.63 to 7.85 
m. The actual average value of surface roughness in confirmation experiment was 6.85 m.  
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4. NEURAL NETWORK BASED MODELLING 
 

The observed research belongs to the problems dealing with continuous input and output 
values i.e. problems connected with prediction, thus the back-propagation network is applied. 
During the process of learning the aim is to enable fast convergence and reduce global error 
given by Eq. (6). 

 
20,5 k kE d x              (6) 

where dk is desired (real) output, while xk presents the output of the network and k is the index 
of output component. 
      In this type of network global error propagates backwards through the network all the way 
to the input layer. During the backward pass all weighted connections are adjusted in 
accordance with the desired neural network output values. Increase or decrease of the actual 
values of the weights  s

jiw  affects the decrease of global error. 
      By the application of the gradient descent rules the increase in the network weighted 
connections  s

jiw  can be given as: 
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where   is the learning coefficient. 
      Derivations given above can be calculated as: 

   

 

 
   1








































 s
j

s
js

j

s
j

s
j

s
ji

xe
w
I

I
E

w
E           (8) 

where  s
jI  is weighted sum of input of the jth neuron in the sth layer. 

      The value of the weighted connections increase in the network  s
jiw  is now: 
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where  s
jx  represents output state of the jth neuron in the sth layer, and the parameter  s

je  that 
represents the error and propagates backwards through all the layers of the network is defined 
as:  
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      The learning coefficient should be kept low to avoid divergence although this could result 
in very slow learning. This situation is solved by including a momentum term into Eq. (9): 

       s
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s
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ji wmomentumxew  1       (11) 

      The weights in the network can be updated for each learning vector separately or else 
cumulatively, which considerably speeds up the rate of learning (convergence). 
      Therefore the objective of the learning process in a neural network is to achieve the lowest 
possible level of error between the outputs obtained by training the network and the actual 
(desired) results. This is realized by adjusting the weights of the neurons, and by accepting the 
objective function, defined below through the minimization of the mean square error. 
      General form vector of the model applicable for a neural network input is as follows: 

   onooooiniiii yyyyYxxxxX ,...,,,,...,,, 321321      (12) 

where vector iX  represents input variables, and vector oY  output variables. 
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      In the given problem the model vector has one output variable – the surface roughness. 
Input variables are: depth of cut, feed rate and number of revolutions (spindle speed), see 
Table V. 
 

Table V: Variables with a value range for the proposed model. 
 

No.  Variable Minimum value Maximum value 
1.  depth of cut 0.13 mm 0.97 mm 
2.  feed rate 32.96 mm/min 117.04 mm/min 
3.  number of revolutions (spindle speed) 329.55 rev/min 1170.45 rev/min 

 
      The RMS error (Root Mean Square error) is taken as a criterion for network validation. 
The Delta rule is applied for network training. This rule is also called the Widrow/Hoff rule or 
the minimum mean square rule which has become one of the basic rules in the training 
process of most neural networks. 
      In Eq. (13) the formula for the Delta rule is given: 

icjji yw        (13) 

where ycj is output value computed in neuron j, jiw is the value of the difference in the 
weights of neuron j and neuron i realized in two steps (kth and k–1), mathematically described 
by Eq. (14): 

1 k
ji

k
jiji www          (14) 

ycj is the output value of neuron j calculated according to transfer function, i  is the error 
given as: 

dicii yy                (15) 

where ydi is the actual (desired) output. The error given by the expression (15) returns to the 
network only rarely, other forms of error are used instead depending on the kind of network.   
      For most actual problems various rates of learning are used for various layers with a low 
rate of learning for the output layer. It is usual for the rate of learning to be set at a value 
anywhere in the interval between 0.05 and 0.5, the value decreasing during the learning 
process. While using the Delta rule algorithm the used data are to be selected from the 
training set at a random basis. Otherwise frequent oscillations and errors in the convergence 
of results can be expected. 
      The transfer function used in this study is the Sigmoid function calculated according to 
Eq. (16). 

iinputGi e
Output





1

1      (16) 

where G is the function increment. It is calculated as G=1/T. T is the function threshold. This 
function is often used when neural networks are created or investigated. The function graph is 
continuously monotonous. The values of this transmission function are in the interval 0,1. 
      The study of the application of the back-propagation network was carried out for a defined 
data model. By alternating the attributes diverse architectures of neural networks were 
studied. The network with the best architecture generated the network output with 3.41 % rate 
of RMS error in the training phase and 4.01 % in the validation phase. The graph in Fig. 3 
shows the results obtained by this network structure with regard to experimental results. In 
Fig. 3a the roughness obtained by the NN model is compared with experimental values from 
the set designed for neural network training and in Fig. 3b with experimental values from the 
set designed for validation. 
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Figure 3: Presentation of actual values and predicted values given by NN for the surface 

roughness; a) training set; b) validation set. 
 
      The graphs give evidence of good prediction of roughness by the neural networks model, 
the correlation coefficient being 0.991. 
      Fig. 4 shows the relationship between the predicted values calculated by the NN model 
and those obtained by the experiment (actual). It can be seen that those values correlate very 
well. 
 

 
 
Figure 4: Predicted (by NN model) response (roughness) related to the measured response. 
 
5. COMPARISON AND VERIFICATION OF THE MODELS 
 
Fig. 5 displays the ranges of the roughness experimental values for all of 20 samples. Some of 
the ranges are markedly narrow indicating material homogeneity and in the course of time 
equalized features that characterize cutting, tool, machine, roughness evaluation device and 
environment. The figure emphasizes roughness values predicted by the regression and NN 
model. Good agreement can be seen with experimental results within the range of cutting 
parameters applied in the experiment. The error is within the limit of 5 %, acceptable in 
practice. 

a) b) 
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Figure 5: Ranges of roughness and the regression and NN model predicted values of  

    roughness. 
 

6. CONCLUSIONS 
 

Surface roughness, defined by a number of controlled and uncontrolled parameters, often 
serves as an important indicator or measure of surface quality and exerts essential influence 
on technological time and total productivity, therefore on production costs too. The aim of the 
investigation, presented in this paper, was to model the surface roughness in end milling of 
aluminium alloy on a low power cutting machine, based on planned experimentation. 
Investigations on such machines are not frequently and commonly carried out. 
      A quadratic regression model is fitted to the experimental data with a very satisfactory 
coefficient of determination (0.965). The method of least squares is used to estimate the 
regression coefficients. The above mentioned regression model can be used to calculate and 
predict well the surface roughness within the chosen and determined range of input variables. 
The NN model approximates well the experimental results with the level of RMS error (Root 
Mean Square error) of 4.01 % in the validation phase with the correlation coefficient of 0.991. 
Therefore, both models are applicable but the adoption of other parameters (cutting 
conditions, tool geometry, tool machine vibrations, tool wear etc.) would increase the 
complexity and level of their applicability. 
      Further investigation will combine the fuzzy logic and neural networks with the new 
parameter (cooling condition) included. 
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