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Abstract 

This paper stablishes the model of the integrated batch planning process, and proposes an improved 

algorithm for this problem. The simulation results of a computerized scheduling system are given to 

prove the fitness of the model. The steel making casting production process scheduling problem is 

very difficult to get a good performance solution in practice. The scheduling of steelmaking casting 

production is a complicated problem of combinational optimization in the hybrid flow shop, which is 

an NP-Hard problem, and determining the polynomial time algorithm to arrive at the accurate optimal 

solution has proved to be a difficult task. An improved fuzzy genetic optimization and improved 

algorithm strategy are proposed. The results show that the method is very efficient in solving the steel 

casting production scheduling problem. 
(Received, processed and accepted by the Chinese Representative Office.) 
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1. INTRODUCTION 

The iron and steel industry is a vital foundation of national economy, and China is the world’s 

largest manufacturer of steel products. However, since it is a high energy-consuming industry 

and energy costs have sharply increased in recent years, the problem of how to effectively 

save energy has attracted increasing attention within the industry. To overcome the obstacle 

of increasing fuel costs, the global iron and steel industry has experienced a revolution to 

promote improved production equipment and technologies. To advance its core competence, 

the industry should take measures to deal with the challenges of cost reduction, quality 

promotion, and investment decisions, while production planning and coordination are the 

most crucial aspects in production management. 

   The challenge of achieving optimal scheduling in steelmaking casting production has 

continuously been the priority and has drawn great attention from the industry. A reasonable 

scheduling plan can effectively reduce production cost and energy consumption, promote 

quality and efficiency and reduce the emission of carbon and other pollutants. Bellabdaoui 

and Teghem identify a mixed integer linear programming model to find the solution to the 

continuous casting problem [1]. However, the optimization algorithm cannot arrive at the 

optimal solution to scheduling in steelmaking casting production in a timely manner. 

However, heuristic algorithm and meta-heuristic algorithm can meet this expectation in time. 

Pan et al. propose to use the integer linear programming model to describe the time 

relationship between furnace and machines [2]. Through using the heuristic method and 

various improvement strategies to optimize the scheduling results as well as using the 

artificial bee colony algorithm to adjust the sequence of changing the furnace. Atighehchian et 

al. suggest manipulating the ant colony algorithm and nonlinear optimization to solve the 

problem [3]. Liu and Sun study the batch split strategy of optimal scheduling in steelmaking 

casting production [4]. Pacciarelli and Pranzo analyse the feasible condition of the model and 

mailto:sulijt@stu.xjtu.edu.cn


Su, Qi, Jin, Zhang: Integrated Batch Planning Optimization Based on Fuzzy Genetic and … 

134 

the time relationship among all scheduling furnace units, and find the mass scheduling results 

through using the beam search algorithm [5]. Li et al. develop the classic model and argue 

that every stage has two machines and used the rolling horizon scheduling algorithm to adjust 

and test [6]. 

   Utilizing the production method of integrating direct hot charge rolling and direct rolling 

process as well as systematically composing three traditional steel production elements, 

steelmaking, continuous casting and hot rolling, has been the absolute choice in the modern 

steel industry to realize volume production [7, 8]. The current studies can be divided into 

three types according to the integration plan strategies: (1) the push type strategy depends on 

a forward process; that is, following the sequence from steelmaking, continuous casting to hot 

rolling to make the furnace schedule, casting schedule and rolling schedule [9, 10]. (2) The 

pull type strategy depends on a reverse process; that is, following the reverse sequence from 

hot rolling, continuous casting to steel-making to make the furnace schedule, casting schedule 

and rolling schedule [11-13]. (3) The mixed strategy initially follows the pull strategy to make 

the scheduling and then the push strategy to coordinate [14-17]. 

   Li et al. [6] proposed a unit-specific event for the steelmaking continuous casting 

scheduling process, and Lin et al. [18] proposed a continuous optimal approach for the 

mid-size steelmaking continuous casting problem. Then this approach was extended to a large 

scale industrial batch plant [19, 20]. Chen et al. [21] improved the Lagrange Relaxation 

approach for the manufacturing job shop scheduling problems, and Fisher [22] employed this 

method to solve the integer programming production problems. More recently, Tang et al. [23] 

established a mathematical program model embedded within the LR to address the SSC 

production scheduling problem. Almost at the same time, the subgradient method and the 

bundle method were proposed for job shop scheduling problems [24, 25]. 

   From the observation, however, all the algorithms mentioned above cannot solve the 

actual steelmaking casting production process scheduling problems. Form all the previous 

methods, even employing highly complex algorithms and modern super computers, the 

computation time used to solve the problems of integer programming multiplies with an 

increase in the problem size, so the optimization of the steelmaking casting production 

process scheduling problems is needed according to the actual steelmaking situations, which 

is the primary motive of this research. 

2. PROBLEM DESCRIPTION 

2.1  Problem analysis 

Most of the existing literature on steel rolling integration only considers the three processes of 

steelmaking, continuous casting and the hot rolling process. When the steelworks make the 

production plan, they must consider the condition of the production equipment, the weight 

and size of steel products, the composition and temperature of molten steel and molten iron. 

However, the composition and exact temperature of the molten steel cannot be identified 

before making the plan. The related information about the composition and temperature of the 

molten steel can only be driven according to the requirement of the steel products, a further 

setback in the control of the steelmaking process. In the actual production process, hot metal 

in the tundish package composition, temperature and other factors all affect the steelmaking 

process directly, which further affect the continuous casting and hot rolling processes. 

Therefore, this planning method cannot guarantee the lowest cost of production as a whole. 

   As a simple example, assume the next production batch plan includes a 100 ton plate (P1) 

and 100 tons of sheet (P2). The demand varieties of molten steels are respectively S1 and S2. 

Now the available molten iron for I1 and I2 are 100 tons each. Specifications of parameters 
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are shown in Table I. From the data in Table I, the ingredient and the temperature of the 

molten iron I1 and molten steel S1 are relatively the same, as are I2 and S2. Under the 

premise of only considering the carbon content and temperature, and the line of production 

arrangement is designed as I2-S2-P2 I1-S1-P1, the total production cost will be the most 

economical. 

Table I: Sample data. 

Project Weight (ton) Carbon content (%) Temperature (℃) 

P1 100 6 25 

P2 100 2 25 

S1 100 6 1650 

S2 100 2 1520 

I1 100 13 1435 

I2 100 8 1342 

   However, in the actual production, a dozen various hot metal ladles could possibly be 

used, several kinds of steel products could be used for production, and molten iron and steel 

components are complex and diverse, all of which greatly increase the difficulty of finding 

the optimal solution. However, solving this problem would be greatly economically beneficial. 

So, in the steel rolling integration decision issue, it is useful to consider the molten iron 

scheduling before the steelmaking process begins. This paper researches molten iron tank bag, 

steelmaking, continuous casting and hot rolling process of the steel rolling integration issue, 

establishes an optimization model and designs an optimized algorithm. In the end, a set of 

examples shows the solving process, and the performance of the algorithm is tested. 

   Because the converter steelmaking process is very complex, this paper does not consider 

the specific chemical reaction process, and concentrates on the steelmaking furnace plan. In 

addition, because of the difficulty of the hot roller material steel in continuous casting with 

the main materials of steel, the proportion of hot wire roller in the rolling element is very 

small, and the warm-up materials of multiple rolling units can be cast in advance by the 

temperature loading, so the hot roller material part is not considered in the preparation of steel 

rolling integrated batch planning. 

2.2  Modelling solutions 

In this paper, suit is identified as the minimum operation object for the tuple steelmaking, 

continuous casting and hot rolling process, and refers to the collection with the same level of 

steel grade, the same carbon content, the same temperature and the same casting width and 

thickness of the casting, thickness of the same width of rolling, and having roughly the same 

priority and date of delivery. 

   The strategies based on the integration are as follows: identify a single integration plan 

according to the match of casting machines and rolling machines, and ensure that it contains 

the number of casting units and rolling plans. Combine the slabs according to the effective 

furnace volume to form the units and then form the batch plan. Additionally, take unit groups 

as the basic operation subject to steelmaking, continuous casting and hot rolling and consider 

the constraints of continuous casting and hot rolling systematically. Then formulate the 

casting and rolling plan at the same time. 

2.3  The constraints satisfaction optimization model 

Considering slabs as visiting clients, batch plans as vehicles, and the unit casting length and 

main body casting length as a generalized time, models of Vehicle Routing Problem with Soft 
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Time Window (VRPSTW) can thus be built for finding the solution. Since this problem is 

constrained by various complex technologies, some of which cannot be described by 

mathematical models, Constraint Satisfaction, CS is used to flexibly build the constraints 

satisfaction optimization model. In addition, the visual slabs should be put into unit groups 

according to the effective furnace volume in order to form the constraints satisfied 

optimization model with unit groups as the basic operation subjects. It is important to note 

that the cost of hot metal smelting steel should be included except for the melting pot weight 

when considering the converter steelmaking process. 

2.4  Model symbols 

The symbols and their interpretations in this model are shown in Table II. 

Table II: Symbols and their interpretations. 

No. Symbol Interpretation 

1 I Suits set, I = {1, 2, …, i, …, NI}  

2 R Converter planning set, R = {1, 2, …, r, …, NR} 

3 U Cast planning set, U = {1, 2, …, u, …, NU} 

4 V Rolling planning set, V = {1, 2, …, v, …, NV} 

5 S Steel-making continuous-casting hot-rolling set, S = {1, 2, …, s, …, NS} 

6 Wi
s
 Casting width of suit i, in meters 

7 Ti
s
 Casting thickness of suit i, in meters 

8 Wi
c
 Rolling width of suit i, in meters 

9 Ti
c
 Rolling thickness of suit i, in meters 

10 Ci
a
 Carbon content of molten steel of suit i, in percent 

11 Hi
a
  Molten steel temperature of suit i, in degrees 

12 Qi Weight of suit i, in tons 

13 Qi
min

 Minimum weight of the suit i, in tons 

14 Qi
max

  Maximum weight of the suit i, in tons 

15 Li Casting length of suit i, in meters 

16 Li
min

  Allowed minimum casting length of suit i, in meters 

17 Li
max

 Allowed maximum casting length of suit i, in meters 

18 Ri
c
 Casting hardness of suit i, dimensionless 

19 SGi Steel grade of suit i, dimensionless 

20 Di Delivery date of suit i, dimensionless 

21 pi Priority of suit i, boolean variable, high priority pi = 1, low priority pi = 0 

22 D
C
 

Allowed maximum change of carbon content in furnace planning for 

adjacent suits, dimensionless 

23 D
H
 

Allowed maximum change of steel temperature in furnace planning for 

adjacent suits, dimensionless 

24 D
SG

 
Allowed maximum change of steel grade in casting planning for adjacent 

suits, dimensionless 

25 D
MT

 
Allowed maximum change of moulds applied in casting planning for 

adjacent suits, dimensionless 

26 D
W

 
Allowed maximum change of width in rolling planning for adjacent suits, 

dimensionless 
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27 D
T
 

Allowed maximum change of thickness in rolling planning for adjacent 

suits, dimensionless 

28 D
R
 

Allowed maximum change of hardness in rolling planning for adjacent 

suits, dimensionless 

29 D
d
 

Allowed maximum change of delivery date in rolling planning for 

adjacent suits, dimensionless 

30 RLi
W

 
The maximum rolling length for the suit with the rolling width of Wi

c
, in 

meters 

31 xsruvi 

Decision variable, xsruvi = 1 if suit i belongs to the s steel-making 

continuous-casting hot-rolling, r furnace, u casting and v rolling planning, 

otherwise, xsruvi = 0 

32 ysrij 
Decision variable, ysrij = 1 if the suit j is after the suit i in r furnace 

planning, otherwise, ysrij = 0 

33 zsuij 
Decision variable, zsuij = 1 if the suit j is after the suit i in s steel-making 

continuous-casting hot-rolling, u casting, otherwise, zsuij = 0 

34 wsvij 
Decision variable, wsvij = 1 if the suit j is after the suit i in s steel-making 

continuous-casting hot-rolling, v rolling planning, otherwise, wsvij = 0 

2.5  Modelling 

The model of steelmaking continuous casting hot rolling planning is established based on the 

VRPSTW problem modelling: 
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   Eq. (1) is the objective function which aims to maximize profit, as well as minimize the 

numbers of plans, steelmaking penalty function values, continuous casting penalty function 

values and loss function values.  represents the weight of each objective. ci and qi represent 

the profit function with the suit in the planning and the loss function without the suit 

respectively. If suit j is after suit i, then the penalty function of the steelmaking, continuous 

casting and rolling are expressed as cij
R
, cij

U
 and cij

V
 respectively. 

   Eqs. (2) to (10) are constraint conditions. Eq. (2) represents the allowed minimum 

(maximum) tundish weight. Eq. (3) represents change modulus in cast. Eq. (4) represents the 

allowed maximum changes in terms of the carbon content of the steel, the steel temperature 

and delivery time between the adjacent suits in furnace. Eq. (5) represents the allowed 

maximum changes in terms of steel grade and delivery date between the adjacent suits in the 

cast planning. Eq. (6) represents the allowed maximum changes in terms of width, thickness, 

hardness and delivery time between the adjacent suits in the rolling planning. Eq. (7) 

represents the length limit with the same wide rolling. Eq. (8) represents the allowed the 

minimum (maximum) length in rolling unit. Eq. (9) represents one suit which can only be 

arranged to one planning. Eq. (10) represents the scopes of the related variables. 

3. FUZZY GENETIC ALGORITHM 

The model of the integrated batch planning process based VRPSTW is one of combinational 

optimization problems, also is NP-hard problem, so it is critical to design an effective 

algorithm for this model. An improved fuzzy genetic algorithm is proposed to obtain the best 

possible solution in limited time. 

   This study proposes an adaptive fuzzy logic-based genetic approach for the detection of 

integrated batch planning process. As the approach’s major novelty, an adaptive-fuzzy logic 

module is integrated with the conventional GA to improve the performance of the GA and 

reduce the premature convergence problem by adjusting the algorithm’s parameters. The flow 

chart of fuzzy logic genetic algorithm is shown in Fig. 1. 

Begin

Generate initial population

Fitness computation

Selection operator

Crossover operator

Fuzzy logic module

Mutation operator

Stop criterion is reached?

End

No

Yes

 

Figure 1: The flow chart of fuzzy logic genetic algorithm. 
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3.1  Design of GA 

(1) Encoding 

   The encoding of the integrated batch planning process includes several decision variables 

such as integration of steel rolling batch planning, furnace, time, cast and rolling planning. 

Therefore, a matrix encoding method which is similar to the particle swarm optimization 

algorithm is employed in this paper, as shown below: 
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where: (a11, a12, …, a1NI,) represents the integrated batch planning, a1i  {1, 2, …, NS},       

i  {1, 2, …, NI}, and each column corresponds with the suit; i.e., a12 = 6 means that the suit 2 

belongs to the 6 integrated batch planning. (a21, a22, …, a2NI) represents the furnace planning, 

a2i  {1, 2, …, NR}, i  {1, 2, …, NI}. (a31, a32, …, a3NI) represents the casting planning,     

a3i  {1, 2, …, NU}, i  {1, 2, …, NI}. (a41, a42, …, a4NI) represents the rolling planning,      

a4i  {1, 2, …, NV}, i  {1, 2, …, NI}. 

   (2) Fitness function 

   Fitness function is the inverse of the objective function. 

   (3) Selection operator 

   In this binary tournament selection process, two individuals are selected at random from 

the population and the fittest one is selected for reproduction. 

   (4) Crossover operator 

   Hierarchical order crossover operator is used for the matrix encoding method. The basic 

rule of hierarchical order crossover operator is execution ordered crossover operation 

separately for each line. The order crossover operator is designed for order-based permutation 

problems. Two crossover points are randomly selected and the segment between them is 

copied to the offspring from the first parent. Starting from the second crossover point in the 

second parent, the elements are copied to the offspring in the order they appear in the second 

parent, avoiding repetition. The second offspring is created in the same way, reversing the 

roles of the parents. 

   (5) Mutation operator 

   Similar to the crossover operator, the mutation operator is hierarchical inverted mutation 

operator. This operator works by randomly selecting two positions in the string and reversing 

the order in which the values appear between those positions. 

3.2  Adaptive-fuzzy logic module 

The fuzzy logic module is composed of fuzzification, fuzzy inference and clarifications. This 

paper proposes, under the consideration that the fitness value of the chromosome has an 

impact on the natural evolution, an adaptive-fuzzy logic module which could adjust mutation 

probability according to the fitness value of the chromosome and the average fitness value of 

the population. The idea is as follows: (1) Improve the mutation probability to eliminate low 

fitness values of individuals when there is a significant difference between the fitness value of 

the current chromosome and the highest fitness value of the chromosome. Otherwise, lower 

mutation probability. (2) Improve the mutation probability to avoid the premature 

convergence when the range of the average fitness value is small. Otherwise, lower mutation 

probability. 



Su, Qi, Jin, Zhang: Integrated Batch Planning Optimization Based on Fuzzy Genetic and … 

140 

   F is the fitness value of the current chromosome. rF  is the average fitness value of 

chromosomes of generation r’s population. Fmax is the fitness value of the best chromosome in 

the current population. Fmin is the fitness value of the worst chromosome in the current 

population. The output parameter is the mutation probability, and the input parameters are 

shown in Table III. 

Table III: Input parameters of fuzzy logic module. 

Input parameter Parameter explanation 

F  The range of the average fitness value,
 1

1

r r

r

F F
F

F






  , [0,1]F  , r > 1 

 

The gap of the fitness value between the current chromosome and the 

best chromosome,
 

 
max

max min

F F

F F






, [0,1]  

   There are nine sematic values in the fuzzy logic module, where ES means extremely small, 

VS means very small, S means small, RS means relatively small, M means medium, RL 

means relatively larger, L means larger, VL means very larger and EL means extremely larger. 

This paper uses the triangle membership function. The graphic of membership function, 

shown in Fig. 2, is derived according to the sematic value and triangle membership function. 

ES VS S RS M RL L VL EL

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0

1

 

Figure 2: The membership function graphic of input and output parameter. 

 

   The fuzzy logic rules, shown in Table IV, are derived according to the fuzzy logic and the 

membership. 

Table IV: The fuzzy logic rules of mutation probability. 



( )F t  
ES VS S RS M RL L VL EL 

ES M RL RL L L VL VL EL EL 

VS RS M RL RL L L VL VL EL 

S RS RS M RL RL L L VL VL 

RS S RS RS M RL RL L L VL 

M S S RS RS M RL RL L L 

RL VS S S RS RS M RL RL L 

L VS VS S S RS RS M RL RL 

VL ES VS VS S S RS RS M RL 

EL ES ES VS VS S S RS RS M 
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4. NUMERICAL SIMULATION 

4.1  Design of the numerical simulation 

Matlab 2012R is employed for the numerical study, and the data are collected from a steel 

company in China. The data are named as group A, group B and group C which include 

orders over a period of three months. 

   The main process parameters are as follows: the enterprise has four similar converters, 

two similar continuous casting machines and one hot rolling mill. According to machine 

capacity matching calculation, the steel rolling integration plan can be identified which 

contains four furnace plans, four pouring time plans and four rolling units. The valid capacity 

of the converter furnace is 280 t ~ 300 t. The minimum weight of the continuous caster 

tundishis is Qmin = 1000 t, and the maximum weight is Qmax = 2700 t, D
MT 

= 1. Hot rolling mill: 

Lmin = 45000 t, Lmax = 70000 m, RLi
W 

= 20000 m. The parameters of fuzzy genetic algorithm 

are: population size Popsize = 300, maximum number of optimization Tmax = 5000. 

4.2  Results and analysis of the numerical simulation 

The results of the numerical study are shown in Table V, where Ns represents the number of 

the integrated batch planning process planning; BR = (weight for the orders included in the 

plan/total weight for all orders)100 %; order matching ratio MOR is the order matching for 

the suits before and after processing. If the continuous casting machine processing order for 

the slab is , and its processing sequence are  on hot rolling mill, then the order matching the 

ratio of this slab is 100 %; NOR = (invalid loading weight/total weight for all orders)100 %; 

OTDR = (weight of orders delivered on time/total weight for all the orders)100 %; ACH = 

total weight of smelting/number of furnace planning; ACW = total casting weight/number of 

cast planning; ARL = total rolling length/rolling units; ACTA is the average time for the 

calculation of the integrated batch planning optimization. The values of carbon content and 

tapping temperature are set as fixed values, and in the actual production process the two 

parameters are usually set in value ranges. 

Table V: The results of the integrated batch planning. 

Project Ns BR MOR NOR OTDR ACH ACW ARL ACT 
Unit - % % % % t t m min 

A 123 97.8 99.1 0.13 96.5 295 2498 62310 0.15 

B 158 98.5 99.2 0.15 95.8 296 2630 66782 0.19 

C 142 98.2 98.7 0.20 96.7 292 2587 64253 0.17 

Average - 98.2 99.0 0.16 96.33 294.33 2572 64448 0.17 

   Analysis of the numerical study: 

   (1) The results of the numerical study show that the proposed improved fuzzy genetic 

algorithm can improve the BR as high as 98.2 %, as well as decrease the NOR (0.16 %) and 

increase the OTDR (96.33 %). 

   (2) Based on the working procedure, fuzzy genetic algorithm calculates the average data 

of steel weight, and continuous casting weight and length of rolling are respectively 294.33 t, 

2572 t and 64448 m. Such a process plan can give full play to the maximum capacity of each 

process. In addition, fuzzy genetic algorithm was used to obtain the matching rate of 

arrangement which is up to 99.0 %. The matching and coordination can be fully realized 

between each process, and the waiting time between the various processes could be greatly 

reduced. It could improve the overall production efficiency, and the management of the 

production level of enterprises. 
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6. CONCLUSIONS 

Optimization of scheduling of the integrated batch planning process can reduce energy 

consumption and production costs, while at the same time increasing profit, so many steel 

companies are focused on how to optimize the integrated batch planning process. This paper 

establishes the model of an integrated batch planning process, and proposes the improved 

algorithms for this problem. The simulation results of a computerized scheduling system are 

also given to prove the model. It has been proved that the proposed improved fuzzy genetic 

algorithm is a very efficient and effective approach and it can help companies obtain 

scheduling results in less overall computing time and experience better performances for the 

integrated batch planning process scheduling problem. This steel rolling batch plan has the 

further benefit of reducing the amount of the default order, thus improving production 

efficiency and market competitiveness. In addition, the average calculation time is only 0.17 

minutes, which can solve the large-scale problems encountered in the process of production in 

an efficient amount of time, and could achieve fast and effective connection with the 

manufacturing execution system. 
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