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Abstract 
 

Increasingly development in the field of banking investigates new technologies for providing the best services between 
banks and customers with good efficiency, and encouraged the accommodation of technology providers. Automatic 
Teller Machine (ATM) has a significant issue in retentive customers as well as achieving an economical advantage 
although growing and preserving the overall profitability of the channel. ATM technology is developing at frightening 
rate and growing in industries with exponential rate. The safety and economic of ATM has been most significant concern 
in networking with the emergence of internetworking technology. The authors investigate the reliability measures of a 
repairable ATM system, by which reliability engineers or designers can determine how reliability can be improved using 
appropriate vicissitudes and also seek the sensitivity analysis for several variations in reliability characteristics along with 
the modifications in precise values of the input parameters.  
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1. Introduction 
 
In the worldwide, ATM network is very significant in 
human life. It has been developed excessively during the last 
two decades and delivers better security, acumen, swiftness 
and convenience. Consumers can be used ATM machine 
connected to bank networks. It saves time of both customers 
and service providers. It reduces labour costs for the bank 
and upsurge availability of banking in an innocuous and cost 
effectiveness scheme. In order to enhance the value to the 
consumers, a magnetic card is given to the customers which 
is specific to their accounts. Customers can easily access 
their ATM cards for attaining banking service such as cash 
withdrawal, balance inquiry, pre-paid mobile recharge, funds 
transfer, bill payment, request for check book, print out mini 
statement etc. High reliability of the ATM becomes more 
significant issues in daily life and necessary for the relation 
between the banks and the customers. Reliability is a key 
element in performance evaluation and life testing of the 
ATM system. Conventional reliability theory deliberates the 
suppositions of the probability theory and the binary states 
of a component or sub-systems of the system as operational 
or failed. 
 Matutes and Padilla (1994) discussed the 
encouragements of banks in concern of ATM and derived 
the implications for ATM compatibility of withdrawal fees, 
interchange bank fees, entry and depositor switching costs. 
Davies et al. (1996) discussed how neural networks can 
bring together psychometric and econometric approaches to 
the measurements of attitudes and sensitivities; and 
advantages of usage of neural network. ATM technology 
perhaps is the most complex networking technology. The 

goal of ATM is to provide a unified networking platform 
and communication infrastructure, ATM security, as a part 
of this infrastructure, has to be flexible and compatible with 
other technology [Liang (1999)]. Howcroft et al. (2002) 
developed the understanding of consumer attitude towards 
bank delivery channels and obtained information about the 
factors which is significant for consumers in encouraging 
and discouraging the adoption of home based banking. ATM 
means neither “avoids traveling with money” nor “any time 
money,” but certainly implies both. The inter-bank ATM 
networks facilitate the use of ATM cards of one bank at the 
ATM(s) of other banks for basic services like cash 
withdrawal and balance enquiry [Singh and Komal (2009)]. 
Adepoju and Alhassan (2010) said that the use of ATM is 
not only safe but is also convenient. This safety and 
convenience, unfortunately, has an evil side as well that do 
not originate from the use of plastic money but rather by the 
misuse of the same. This evil side is reflected in the form of 
“ATM frauds” that is a global problem. Ahaiwe (2011) 
studied the relationship between banks and other service 
provider in banking sector in the concern of economy and 
proficient ATM services. ATM organization encourages 
competition by save time and reduces bank risks. The 
motivating factors for using the branch ATM services are 
privacy in carrying out banking transactions, time saving 
element and the flexibility in use and demotivating factors 
that prevented respondents from using the branch. Narteh 
(2013) analysed the five aspects of ATM service quality as 
reliability of ATM, convenience, responsiveness, ease of use 
and fulfilment. He founded results provide a guide to bank 
managers by which improve the efficiency and effectiveness 
of the ATMs.  
 Many researchers have done a lot of work related to 
ATM and ATM network but they have not found the 
reliability measures of ATM network which have a great 
importance in the concern of performance of ATM network. 
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In the modern scenario, reliability has become the most 
challenging, demanding theory and can be seen in the 
literature. Avizienis et al. (2004) discussed the very essential 
and widespread explanation in the form of basic concepts 
and taxonomy of dependability and secure computing, and 
they tried to give the foremost fields and approaches of 
engineering and sciences, where reliability theory has been 
applied. Maintaining a high reliability is an essential 
requirement of ATM network too. In order to increase the 
efficiency of any network, failed unit is renewed by 
replacing or repaired. Repairman is also one of the crucial 
parts of the repairable systems that can affect the economy 
of the systems directly or indirectly [Manglik and Ram 
(2013)]. Ram (2013) stated that reliability prediction is the 
combination of the creation of the proper reliability model 
together with approximating input parameters for this model, 
and provide a system level estimate for output reliability 
parameters.  
 
 
2. Mathematical Model details 
 
2.1. Assumptions 
The designed model associated with the following 
assumptions- 
 

i. The ATM system has three possible modes normal, 
partial failure and total failure. 

ii. Failure and repair rates are generally distributed. 
iii. Failures are announcing on the basis of literature. 
iv. A single repair facility is available to attend the 

partially or totally failed system. 
v. Repairs are perfect i.e. repair facility never does 

any damage to the units of the network. 
vi. The unit recovers its functioning perfectly upon 

repair. 
vii. The system becomes inoperable on the failure of 

ATM machine or hub of the network. 
viii. The repair time of the failed system is arbitrarily 

distributed. 
 

2.2. Nomenclature and state description 
Notations associated with this work are shown in Table 1. 
 
Table 1. Notations and states 
T Time scale. 
S Laplace transform variable. 

		P(s)  Laplace transformation of		P(t) . 

	λT /	λP /

λ /	λA /

	λH  

Failure rates for host / interface PC / nodes / 
ATM machine / hub. 

		Pi(t)  The probability of the stage Si at time t when 
i=0, 1, 2, 3……, 15. 

		Pj(x ,t)  The probability density function of the state Sj, 
when j=16, 17. 

		µ(x)  Repair rates for the system when host / 
interface PC / any node have been failed. 

		ϕ(x)  Repair rates for the system when ATM 
machine or hub has been failed. 

Si Good or partially failed (degraded) state of 
system when system is perfect or partially 
failed by failure rate of host/ interface PC/ 
nodes; i=0, 1, 2, ……………, 15. 

Sj The state of the system when ATM machine or 

hub is failed; j=16, 17. 

		Pup(t)  Up state system probability at time t or 
availability of the ATM system 

Rl(t) The reliability of the ATM system at time t. 
Ep(t) Expected profit during the interval [0, t). 
K1, K2 Revenue and service cost per unit time 

respectively. 
 
2.3. Problem statement 
This research work investigates about the performance of 
ATM channel, it is a network in which ATM machine is 
connected to the host and interface PC with the switch 
(Hub); nodes for record the transaction of customers. 
Account is also connected to the host by hub. Configuration 
diagram of the network is shown in Fig.1(a) and Fig.1(b) 
demonstrates their state transition diagram. It is assumed that 
host, interface PC, and nodes are connected in parallel and 
three nodes are used in the network. This type of ATM 
network can be easily found in any banking service. The 
system has general distribution of equipment failures and 
two repair rates. When hub or ATM machine is failed then 
system goes to complete failed state otherwise system is 
partially failed with any other failure of the network. This 
network can be used for places where the user volume is 
high. The authors have designed transition state diagram of 
this network using stochastic modelling which has total 18 
states; 1 is good state, 15 partially failed (degraded) states 
and 2 is complete failed states. When any equipment of the 
designed system is failed then system is immediately repair 
and emanate back in good working condition. 
 
2.4. Formulation and Solution of the Model 
By probabilistic considerations and continuity arguments, 
we have obtained the following set of differential equations 
overriding the present mathematical model  
 

		

∂
∂t

+λA +λH +λP +λT +3λ
⎡

⎣
⎢

⎤

⎦
⎥P0(t)=

µ(P1(t)+P6(t)+P11(t))+ ϕ(x)
0

∞

∫ (P16(x ,t)+P16(x ,t))dx   
 (1) 

 

		

∂
∂t

+λT +λH + µ
⎡

⎣
⎢

⎤

⎦
⎥Pi(t)= µPi+1(t)+λPPi−1(t),

i =1,14
                    (2) 

 

		

∂
∂t

+3λ +λH + µ
⎡

⎣
⎢

⎤

⎦
⎥Pi(t)= µPi+1(t)+λTPj(t);

i =2,6; j =1,0
       (3) 

 

		

∂
∂t

+2λ +λH + µ
⎡

⎣
⎢

⎤

⎦
⎥Pi(t)= µPi+1(t)+3λPj(t);

i =3,7,11; j =2,6,0
     (4) 

 

		

∂
∂t

+λ +λH + µ
⎡

⎣
⎢

⎤

⎦
⎥Pi(t)= µPi+1(t)+2λPi−1(t);

i = 4,8,12
                    (5) 
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∂
∂t

+λH + µ
⎡

⎣
⎢

⎤

⎦
⎥Pi(t)=αPi−1(t);

i =5,10,15; α = λ ,λP ,λT
      (6) 

 

		

∂
∂t

+λP +λH + µ
⎡

⎣
⎢

⎤

⎦
⎥Pi(t)= µPi+1(t)+λPi−1(t);

i = 9,13
                      (7) 

 

 
Fig.1(a). Configuration diagram 

 
Fig. 1(b). State transition diagram 
 
 
 

		

∂
∂t

+ ∂
∂x

+ϕ(x)⎡

⎣
⎢

⎤

⎦
⎥Pi(x ,t)=0,

i =16,17
                             (8) 

 

 Boundary conditions 
 

		P16(0,t)= λAP0(t)                                                                 (9) 

 

		
P17(0,t)= λH Pi(t)

i=0

15

∑                                                          (10) 

 
 Initial condition 
 

		Pi(0)=1 , when i=0 otherwise 0.                                     (11) 
 
 Taking Laplace transform of (1) to (10) using (11) 
 

		

s +λA +λH +λP +λT +3λ⎡⎣ ⎤⎦P0(s)=

1+ ϕ(x)
0

∞

∫ (P16(x ,s)+P16(x ,s))dx
 

		+µ(P1(s)+P6(s)+P11(s))           (12) 
 

		 s +λT +λH + µ⎡⎣ ⎤⎦Pi(s)= µPi+1(s)+λP Pi−1(s); i =1,14   (13) 

 

		

s +3λ +λH + µ⎡⎣ ⎤⎦Pi(s)= µPi+1(s)+λT P j(s);
i =2,6; j =1,0

  (14) 

 

		

s +2λ +λH + µ⎡⎣ ⎤⎦Pi(t)= µPi+1(s)+3λP j(s);
i =3,7,11; j =2,6,0

  (15) 

 

		

s +λ +λH + µ⎡⎣ ⎤⎦Pi(s)= µPi+1(s)+2λPi−1(s);
i = 4,8,12

   (16) 

 

		

s +λH + µ⎡⎣ ⎤⎦Pi(s)=αPi−1(s);
i =5,10,15; α = λ ,λP ,λT

    (17) 

 

		

s +λP +λH + µ⎡⎣ ⎤⎦Pi(s)= µPi+1(s)+λPi−1(s);
i = 9,13

            (18) 

 

		
s + ∂

∂x
+ϕ(x)⎡

⎣
⎢

⎤

⎦
⎥Pi(x ,s)=0; i =16,17    (19) 

 

		P16(0,s)= λAP0(s)                                                            (20) 

 

		
P17(0,s)= λH Pi(s)

i=0

15

∑                                                        (21) 

 
 After solving Equation (12) to (21), we get the state 
transition probabilities as 
 

		
P0(s)= 1

D(s)                                                                      (22) 
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Pi(s)=
Aj−1ξ
Aj

P0(s);

i =1,6,11; j =12,8,4; ξ = λP ,λT ,3λ
                            (23) 

 

		

Pi(s)=
Aj−2ξ
Aj

P0(s);

i =2,7,12; j =12,8,4; ξ = λPλT ,3λλT ,6λ2

   (24) 

 

		

Pi(s)=
Aj−3ξ
Aj

P0(s);

i =3,8,13; j =12,8,4; ξ =3λPλTλ ,6λTλ2 ,6λ3

             (25) 

 

		

Pi(s)= 6ξ(s +H7 )
Aj

P0(s);

i = 4,9,14; j =12,8,4; ξ = λPλTλ
2 ,λTλ3 ,λPλ3

  (26) 

 

		
Pi(s)= 6λPλTλ

3

Aj
P0(s); i =5,10,15; j =12,8,4            (27) 

 

		

Pi(s)=αβξ ; α =λA , λH ; β = 1− Sϕ(s)
s

⎛

⎝
⎜

⎞

⎠
⎟ ;

ξ = P0(s), Pi(s)
i=0

15

∑
                                  

(28) 
 
Where 

 

		
D(s)= (s +H1)−µ

A11λP
A12

+
A7λT
A8

+
3A3λ
A4

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− Sϕ(s) λA +λAB( )  

 

		H1 = λP +λT +λH +λA +3λ , 		H2 = λT +λH + µ , 

		H3 = λP +λH + µ , 		H4 = λH +3λ + µ , 		H5 = λH +2λ + µ , 

		H6 = λH +λ + µ ,  
 

		H7 = λH + µ  
 

		A1 = (s +H2)(s +H7 )−µλT ; 		A2 = (s +H3)A1 −µλP(s +H7 ) ; 

		A3 = (s +H6 )A2 −µλA1 ; 		A4 = (s +H5)A3 −2µλA2 ;  
 

		A5 = (s +H3)(s +H7 )−µλP ; 		A6 = (s +H6 )A5 −µλ(s +H7 ) ; 

		A7 = (s +H5)A6 −2µλA5 ; 		A8 = (s +H4 )A7 −3µλA6 ;  
 

		A9 = (s +H6 )(s +H7 )−µλ ; 		A10 = (s +H5)A9 −2µλ(s +H7 ) ; 

		A11 = (s +H4 )A10 −3µλA9 ; 		A12 = (s +H2)A11 −µλT A10  
 
 Laplace transformation of probability of the state when 
the system is in up-state (degraded or good state) 

 

		
Pup(s)= Pi(s)

i=0

15

∑  

           

		
= 1+ A11λP + A10λPλT +3A9λPλTλ +6λPλTλ

2(s +H7 )+6λPλTλ3

A12

⎧
⎨
⎪

⎩⎪
 
                         

		
+
A7λT +3A6λλT +6A5λTλ2 +6λTλ3(s +H7 )+6λPλTλ3

A8
 

                                             

		
+
3A3λ +6A2λ2 +6A1λ3 +6λPλTλ3 +6λPλ3(s +H7 )

A4

⎫
⎬
⎪

⎭⎪
P0(s)    (29) 

 
 Laplace transformation of probability of the state when 
the system is in down-state (failed state) 
 

		Pdown(s)= P16(s)+P17(s)  
           

		
= 1− Sϕ(s)

s

⎛

⎝
⎜

⎞

⎠
⎟ λA +λH 1+ A11λP + A10λPλT +3A9λPλTλ +6λPλTλ

2(s +H7 )+6λPλTλ3

A12

⎧
⎨
⎪

⎩⎪

⎡

⎣
⎢
⎢

 

                               

		
+
A7λT +3A6λλT +6A5λTλ2 +6λTλ3(s +H7 )+6λPλTλ3

A8
 

                                         

		
+
3A3λ +6A2λ2 +6A1λ3 +6λPλTλ3 +6λPλ3(s +H7 )

A4

⎫
⎬
⎪

⎭⎪

⎤

⎦
⎥
⎥
P0(s)      (30) 

 
 
3. Particular cases and Numerical computations 
 
3.1 Availability Analysis 
Availability may be progressed by an elaborate plan on 
focusing on increasing testability and maintainability and not 
on reliability. The value of availability depends on the 
system structure as well as on the component availability. 
This value decreases as the component ages increases, i.e. 
their serving times are influenced by their interactions with 
each other’s [Samrout et al. (2005)]. 
 
(i) When the ATM system is in comprehensive state 
Consider that initially, the ATM system works properly. We 
assume that 100% repair facility is available in the system, 
hence taking the repair rates as 		ϕ(x)=1,  		µ(x)=1  and 
value of different failure rates as 		λT =0.15,  		λP =0.05,  

	λ =0.2,  		λA =0.2,  		λH =0.1  in Equation (29). We obtain the 
availability in terms of time after taking the inverse Laplace 
transformation. 
 
(ii) When no failure in the host of the ATM system 
Suppose that the host failure rate is zero; and setting other 
failure and repair rates as 		λT =0,  		λP =0.05,  	λ =0.2,  

		λA =0.2,  		λH =0.1,  		ϕ(x)=1,  		µ(x)=1  in Equation (29) and 
find the inverse Laplace transformation. One can obtain 
availability of the ATM system in terms of time. 
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(iii) When no failure in the interface PC of the ATM 
system 
Consider that the interface PC failure rate is zero and other 
different failure rates and repair rates as		λT =0.15, 		λP =0,

	λ =0.2, 		λA =0.2, 		λH =0.1, 		ϕ(x)=1, 		µ(x)=1 . Substituting 
all these values in Equation (29) and taking the inverse 
Laplace transformation, one can determine the availability of 
the ATM system in terms of time. 
 
(iv) When no failure in nodes of the ATM network 
When nodes in the ATM network are not failed then failure 
rate of node is zero. Taking the value of different failure 
rates and repair rates as 		λT =0.15, 		λP =0.05 ,	λ =0,

		λA =0.2, 		λH =0.1, 		ϕ(x)=1, 		µ(x)=1 . Putting all these 
values in Equation (29), we may get availability in terms of 
time after taking the inverse Laplace transformation. 
 
(v) When no failure in ATM machine 
When ATM machine is in perfect working condition, fixing 
the value of different failure rates and repair rates as 

		λT =0.15, 		λP =0.05, 	λ =0.2, 		λA =0, 		λH =0.1, 		ϕ(x)=1,
		µ(x)=1  and substituting all these values in Equation (29), 
we obtain availability in terms of time after taking the 
inverse Laplace transformation. 
 
(vi) When no failure in hub of the ATM network 
Contemplate that hub in the network is not failed, taking the 

value of different failure rates and repair rates as 		λT =0.15,
		λP =0.05, 	λ =0.2, 		λA =0.2, 		λH =0, 		ϕ(x)=1, 		µ(x)=1 and 
substitute all these values in Equation (29), we obtain the 
availability in terms of time after finding the inverse Laplace 
transformation. 
 Now varying the time unit t from 0 to 20 in the inverse 
Laplace transformation of above cases, one can get the 
availability of the ATM system is shown in Table 2 and 
represented graphically in Fig.2. 
 
Table 2. Availability as function of time 

Time 
(t) 

Availability Pup(t) 

Case (i) Case 
(ii) 

Case 
(ii) 

Case 
(iv) 

Case 
(v) 

Case 
(vi) 

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
1 0.86030 0.85587 0.85892 0.84022 0.93935 0.91927 
2 0.83591 0.82883 0.83393 0.80134 0.91916 0.90683 
3 0.83229 0.82430 0.83027 0.79167 0.91244 0.90917 
4 0.83246 0.82410 0.83048 0.78922 0.91021 0.91228 
5 0.83307 0.82454 0.83113 0.78859 0.90946 0.91447 
6 0.83354 0.82491 0.83161 0.78842 0.90921 0.91583 
7 0.83383 0.82514 0.83190 0.78838 0.90913 0.91666 
8 0.83400 0.82528 0.83207 0.78837 0.90910 0.91716 
9 0.83410 0.82535 0.83217 0.78837 0.90909 0.91746 

10 0.83416 0.82539 0.83222 0.78837 0.90909 0.91764 
11 0.83419 0.82541 0.83225 0.78837 0.90909 0.91776 
12 0.83421 0.82542 0.83227 0.78837 0.90909 0.91783 
13 0.83422 0.82542 0.83228 0.78837 0.90909 0.91788 
14 0.83422 0.82543 0.83229 0.78837 0.90909 0.91791 
15 0.83423 0.82543 0.83229 0.78837 0.90909 0.91794 
16 0.83423 0.82543 0.83229 0.78837 0.90909 0.91795 
17 0.83423 0.82543 0.83229 0.78837 0.90909 0.91795 
18 0.83423 0.82543 0.83229 0.78837 0.90909 0.91796 
19 0.83423 0.82543 0.83229 0.78837 0.90909 0.91797 
20 0.83423 0.82543 0.83229 0.78837 0.90909 0.91797 

 
3.2. Reliability Analysis 
Reliability of a network is an essential aspect in the 
designing of the network because reliability investigates the 
probability that the network will successfully meet their 

design requirements. If any key equipment of the network is 
damaged, the system will break down [Zhang and Yang 
(2009)]. For procurement the reliability of the system 
assume that repair facility is not available i.e. taking all the 
repair rates equal to zero in Equation (29).  
 
 

 
Fig. 2. Availability v/s Time 
 
 
 (i) When the ATM system is in comprehensive state 
Consider that initially, the system work properly. For this 
taking the value of different failure rates as 		λT =0.15,  

		λP =0.05,  	λ =0.2,  		λA =0.2,  		λH =0.1  in Equation (29). 
We obtain the reliability in terms of time after taking the 
inverse Laplace transformation. 
 
(ii) When no failure in the host of the ATM system 
Taking the host failure rate is zero; and other failure as 

		λT =0,  		λP =0.05,  	λ =0.2,  		λA =0.2,  		λH =0.1  in Equation 
(29), we may get the reliability as a function of time after 
determine the inverse Laplace transformation. 
 
(iii) When no failure in the interface PC of the ATM 
system 
Suppose that the interface PC failure rate is zero and other 
different failure rates as		λT =0.15, 		λP =0, 	λ =0.2, 		λA =0.2,

		λH =0.1 . Substituting all these values in Equation (29) and 
taking the inverse Laplace transformation, one can obtain the 
reliability as a function of time. 
 
(iv) When no failure in nodes of the ATM network 
Consider that any node connected in the network is not 
failed so its failure rate is zero. Taking the value of different 
failure rates as 		λT =0.15, 		λP =0.05, 	λ =0, 		λA =0.2,

		λH =0.1 . Putting all these values in Equation (29) determine 
the inverse Laplace transformation. One can determine the 
reliability in terms of time. 
 
(v) When no failure in ATM machine 
Contemplate that ATM machine connected in the network is 
not failed, setting the value of different failure rates as 

		λT =0.15, 		λP =0.05, 	λ =0.2, 		λA =0, 		λH =0.1 . Substituting 
all these values in Equation (29), one can determine the 
reliability as a function of time after taking the inverse 
Laplace transformation. 
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(vi) When no failure in hub of the ATM network 
Contemplate that hub in the network is not failed, fixing the 
value of different failure rates as 		λT =0.15, 		λP =0.05,

	λ =0.2, 		λA =0.2, 		λH =0 . Positioning all these values in 
Equation (29), one can calculate reliability in terms of time 
after taking the inverse Laplace transformation. 
 Now varying the time unit t from 0 to 20 in the inverse 
Laplace transformation of above cases, one can get the 
reliability of the ATM network is shown in Table 3 and 
correspondingly revealed in Fig.3 respectively. 
 
Table 3. Reliability as function of time 

Time 
(t) 

Reliability Rl(t) 

case (i) case (ii) case 
(iii) 

case 
(iv) case (v) case 

(vi) 
0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
1 0.79044 0.78293 0.78802 0.75568 0.90484 0.87357 
2 0.67714 0.66128 0.67215 0.59330 0.81873 0.82707 
3 0.60003 0.58012 0.59388 0.48197 0.74082 0.80996 
4 0.53871 0.51786 0.53236 0.40283 0.67032 0.80366 
5 0.48604 0.46585 0.47994 0.34431 0.60653 0.80135 
6 0.43932 0.42047 0.43366 0.29930 0.54881 0.80049 
7 0.39736 0.38005 0.39218 0.26339 0.49658 0.80018 
8 0.35949 0.34372 0.35478 0.23382 0.44933 0.80007 
9 0.32526 0.31095 0.32099 0.20884 0.40657 0.80002 

10 0.29431 0.28134 0.29044 0.18731 0.36788 0.80001 
11 0.26630 0.25455 0.26279 0.16848 0.33287 0.80000 
12 0.24095 0.23033 0.23778 0.15184 0.30119 0.80000 
13 0.21802 0.20841 0.21516 0.13702 0.27253 0.80000 
14 0.19727 0.18857 0.19468 0.12375 0.24660 0.80000 
15 0.17850 0.17063 0.17615 0.11184 0.22313 0.80000 
16 0.16152 0.15439 0.15939 0.10111 0.20190 0.80000 
17 0.14615 0.13970 0.14422 0.09144 0.18268 0.80000 
18 0.13224 0.12640 0.13050 0.08271 0.16530 0.80000 
19 0.11965 0.11438 0.11808 0.07482 0.14957 0.80000 
20 0.10827 0.10349 0.10684 0.06769 0.13533 0.80000 

 

 
Fig. 3. Reliability v/s Time 
 
 
3.3 Mean time to failure (MTTF) 
Mean time to failure (MTTF) is the forecasted elapsed time 
between inherent failures of a system during operation. It 
can be determined as the average time between failures of a 
network. Considering all repair rates to be zero in (29), one 
can obtain the MTTF as  

		MTTF = lims→0
Pup(s)  

		
=

λP +3λ +λH +λT
(λP +3λ +λH +λT +λA)λH

                                            (31) 

 
 Now varying input parameters one by one at 
0.1,0.2,……………..,0.9 respectively and setting the failure 

rate as 		λT =0.15,  		λP =0.05,  	λ =0.2,  		λA =0.2,  		λH =0.1  in 
(31), we can get the variation of MTTF with respect to 
failure rates that signify in Table 4 and graphical 
representation shown in Fig.4 as  
 
Table 4. MTTF as function of failure rates 

Variation in 

	λT , 	λP , λ , 	λA , 

	λH  

MTTF with respect to failure rates 

	λT  	λP  λ  	λA  	λH  

0.1 8.09524 8.26087 7.50000 9.00000 8.18182 
0.2 8.26087 8.40000 8.18182 8.18182 4.16667 
0.3 8.40000 8.51852 8.57143 7.50000 2.82051 
0.4 8.51852 8.62069 8.82353 6.92308 2.14286 
0.5 8.62069 8.70968 9.00000 6.42857 1.73333 
0.6 8.70968 8.78788 9.13043 6.00000 1.45833 
0.7 8.78788 8.85714 9.23077 5.62500 1.26050 
0.8 8.85714 8.91892 9.31034 5.29412 1.11111 
0.9 8.91892 8.97436 9.37500 5.00000 0.99415 

 

 
Fig. 4. MTTF as function of failure rates 

 
 

3.4 Sensitivity 
Sensitivity of a measure is described as the partial derivative 
of the measure with respect to their input factors. Sensitivity 
analysis, also called importance analysis [Henley and 
Kumamoto (1992), Andrews and Moss (1993)], help detect 
which parameter contribute most to system performance and 
thus would be good ones for elevate. Sensitivity of a feature 
is defined as the partial derivative of the function with 
respect to their input factors. Here these input factors are 
failure rates of the designed ATM system. 
 
3.4.1 Sensitivity of reliability 
Reliability sensitivity can be obtained by differentiating 
partially (29) after putting repair rates zero, with respect to 
their input parameters. Setting the values of input parameters 
as in comprehensive case of reliability analysis, one can 
obtain Table 5 and their graphical representation as shown in 
Fig.5.  
 
3.4.2 Sensitivity of MTTF 
MTTF sensitivity can be predicted by partial differentiation 
of (31) with respect to the input parameters and then setting 
the values of input parameters as in partial derivatives of 
MTTF, one may get Table 6 and graphically demonstrated 
by Fig.6 
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Table 5. Reliability sensitivity as a function of time 

Time (t) Reliability Sensitivity 
     

0 0.00000 0.00000 0.00000 0.00000 0.00000 
1 0.04782 0.04782 0.14346 -0.52415 -0.79044 
2 0.09726 0.09726 0.29179 -0.61066 -1.35429 
3 0.11866 0.11866 0.35597 -0.58528 -1.80009 
4 0.12179 0.12179 0.36536 -0.53626 -2.15485 
5 0.11640 0.11640 0.34921 -0.48604 -2.43021 
6 0.10786 0.10786 0.32357 -0.43959 -2.63593 
7 0.09859 0.09859 0.29578 -0.39754 -2.78151 
8 0.08959 0.08959 0.26878 -0.35958 -2.87595 
9 0.08121 0.08121 0.24364 -0.32530 -2.92739 

10 0.07354 0.07354 0.22062 -0.29432 -2.94307 
11 0.06656 0.06656 0.19968 -0.26630 -2.92928 
12 0.06023 0.06023 0.18070 -0.24096 -2.89147 
13 0.05450 0.05450 0.16351 -0.21803 -2.83433 
14 0.04932 0.04932 0.14796 -0.19728 -2.76189 
15 0.04462 0.04462 0.13388 -0.17850 -2.67756 
16 0.04038 0.04038 0.12114 -0.16152 -2.58427 
17 0.03654 0.03654 0.10961 -0.14615 -2.48449 
18 0.03306 0.03306 0.09918 -0.13224 -2.38030 
19 0.02991 0.02991 0.08974 -0.11965 -2.27344 
20 0.02707 0.02707 0.08120 -0.10827 -2.16536 

 
 

 
Fig. 5. Reliability sensitivity V/s Time 
 
 
 
Table 6. MTTF sensitivity as a function of input parameters 
Variatio

n in 

	λT , 

	λP , 

λ , 

	λA , 

	λH  

MTTF Sensitivity 

	

∂MTTF
∂λT

 
	

∂MTTF
∂λP

 
	

∂MTTF
∂λ

 
	

∂MTTF
∂λA

 
	

∂MTTF
∂λH

 

0.1 1.81406 1.51229 9.37500 -9.00000 -80.16529 
0.2 1.51229 1.28000 4.95868 -7.43802 -20.13889 
0.3 1.28000 1.09739 3.06122 -6.25000 -9.00723 
0.4 1.09739 0.95125 2.07612 -5.32544 -5.10204 
0.5 0.95125 0.83247 1.50000 -4.59184 -3.28889 
0.6 0.83247 0.73462 1.13421 -4.00000 -2.30035 
0.7 0.73462 0.65306 0.88757 -3.51562 -1.70186 
0.8 0.65306 0.58437 0.71344 -3.11419 -1.31173 
0.9 0.58437 0.52597 0.58594 -2.77778 -1.04305 

 
4. Results and Discussion 
 
In this work, authors have sought the performance of ATM 
network with the help of analysing the availability, 
reliability, mean time to failure and sensitivity of the 
designed ATM network. In this section, authors are 
discussing the above findings. 

 From Table 2 and Fig.2, one has an idea about the 
availability of the ATM system. By the graph of availability, 
it is clear that availability of the designed ATM network 
decreases fastly as time increases in each case and after a 
long run it becomes constant at some value. Except in case 
of no failure in ATM machine or nodes, availability of the 
system increases slightly within a short period of time and 
then becomes constant. When nodes are not failed then 
network has lowest availability and in case of no failure of 
hub, network has highest availability. 
 

 
Fig. 6. MTTF sensitivity v/s Failure rates 
 
 
 Table 3 and Fig.3 gives us an idea about reliability of the 
ATM network. Critical examination of Fig.3 shows that how 
reliable this network? From the graph of reliability, one can 
see that reliability of suggested network decreases smoothly 
as time passes and establish at some value after a long run in 
each situation. It is surprisingly that when hub connected in 
the network is in perfect working condition then the network 
is highly reliable. In this situation, it is seen that reliability is 
less decreases as compare to other situations. In case of 
perfectly functioning nodes, the network is less reliable. 
When ATM network is in comprehensive state or when 
host/interface PC is not failed, the network accomplishes 
approximately same reliability. 
 Fig.4 yields the mean time to failure of ATM network. 
Generally, MTTF of any system decreases as failure rate 
increases. In the case of ATM network, MTTF leads 
decrement with the increment of failure rate of ATM 
machine or hub of the network. ATM machine and hub is 
the most significant unit of the channel. It is interesting point 
that MTTF of ATM network increases when failure rate of 
host/interface PC/nodes increases, those play backstage role 
in this network. These units of ATM channel are used only 
by service providers in bank. In case of increasing the failure 
rate of nodes MTTF is highly increase while in case of 
increasing failure rate of hub MTTF is highly decreases. 
 Fig.5 shows the trend of reliability sensitivity. It reveals 
that the sensitivity of reliability decreases in case of no 
failure in ATM machine or hub and increases in case of no 
failure in nodes/ interface PC/ host. Vital examination of the 
graph shows that when no failure in host and interface PC, 
the reliability system coincide with each other. One can see 
that reliability of the network is most affected by the hub 
failure. By controlling the failure rate of hub, one can 
improve the reliability of the designed ATM network. The 
sensitivity of MTTF with respect to their input parameters is 
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exposed in Fig.6. From the graph of MTTF sensitivity, one 
can see that the MTTF sensitivity increases with respect to 
increasing failure rate of hub and ATM machine and 
decreases in case of increasing failure rate of host / interface 
PC / nodes. Sensitivity of MTTF is increases rapidly as 
failure rate of hub increases. As failure rate of nodes / 
interface PC / host increases, after some increment 
sensitivity of MTTF coincide with each other. It concluded 
that by controlling the failure rate of hub, one can improve 
the reliability of the designed network and can reduce the 
MTTF of the network. 
 
5. Conclusion 
 
The present study has attempted the comprehensive 
overview of the performance of an ATM network with the 

help of availability, reliability, MTTF, and sensitivity of 
reliability and MTTF of the designed ATM network. 
Performance is very important for any network or system. 
Authors concluded that by controlling the failure rate of 
ATM machine and hub connected in the network, one can 
improve the reliability of the designed network and increase 
the MTTF of the network. Hence, this study is very useful 
for reliability engineers and designers because with the help 
of this study they can achieve better performance of the 
ATM network. In future, there is huge opportunity for 
growth of ATM network in banking sector. More research is 
required to investigate whether or not a pictorial design 
could provide appropriate clues for the user; about the 
security and economy of banking sector. 

 
____________________________ 
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