Vol. 18
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-10-27
Accelerated Antenna Design Methodology Exploiting Parameterized Cauchy Models
By
Progress In Electromagnetics Research B, Vol. 18, 279-309, 2009
Abstract
We propose an optimization methodology suitable for the design of various antenna structures. This methodology includes a rapidly-converging iterative scheme. In each iteration stage, the algorithm generates a parameterized Cauchy model using the available results from previous iterations. Optimization is then applied to this Cauchy model to obtain better design parameters that are also used in enhancing the accuracy of the model. This cycle continues until the specifications are met. In addition, this on-the-fly technique produces an analytical model of the behavior of the antenna structure. Sensitivity and tolerance analyses can thus be efficiently carried out without the need for further costly electromagnetic simulations.
Citation
George Shaker, Mohamed H. Bakr, Nagula Sangary, and Safieddin Safavi-Naeini, "Accelerated Antenna Design Methodology Exploiting Parameterized Cauchy Models," Progress In Electromagnetics Research B, Vol. 18, 279-309, 2009.
doi:10.2528/PIERB09091109
References

1. Preis, K., O. Biro, M. Friedrich, A. Gottvald, and C. Magele, "Comparison of different optimization strategies in the design of electromagnetic devices," IEEE Transactions on Magnetics, Vol. 27, No. 5, 4154-4157, Sep. 1991.
doi:10.1109/20.105016

2. Ishikawa, T., Y. Tsukui, and M. Matsunami, "Optimization of electromagnetic devices using artificial neural network with quasi-Newton algorithm," IEEE Transactions on Magnetics, Vol. 32, No. 3, 1226-1229, May 1996.
doi:10.1109/20.497465

3. Yokose, Y., V. Cingoski, and H. Yamashita, "Genetic algorithms with assistant chromosomes for inverse shape optimization of electromagnetic devices," IEEE Transactions on Magnetics, Vol. 36, No. 4, 1052-1056, Jul. 2000.
doi:10.1109/20.877622

4. Villegas, F. J., T. Cwik, Y. Rahmat-Samii, and M. Manteghi, "A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2424-2435, Sep. 2004.
doi:10.1109/TAP.2004.834071

5. Baumgartner, U., C. Magele, K. Preis, and W. Renhart, "Particle swarm optimisation for Pareto optimal solutions in electromagnetic shape design," IEE Proceedings on Science, Measurement and Technology, Vol. 151, No. 6, 499-502, Nov. 2004.
doi:10.1049/ip-smt:20040631

6. Jin, N. and Y. Rahmat-Samii, "Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3459-3468, Nov. 2005.
doi:10.1109/TAP.2005.858842

7. Jin, N. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multi-objective implementations," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 556-567, Mar. 2007.
doi:10.1109/TAP.2007.891552

8. Magele, C. A., K. Preis, W. Renhart, R. Dyczij-Edlinger, and K. R. Richter, "Higher order evolution strategies for the global optimization of electromagnetic devices," IEEE Transactions on Magnetics, Vol. 29, No. 2, 1775-1778, Mar. 1993.
doi:10.1109/20.250749

9. Hoorfar, A., "Evolutionary programming in electromagnetic optimization: A review," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 523-537, Mar. 2007.
doi:10.1109/TAP.2007.891306

10. Pantoja, M. F., A. R. Bretones, and R. G. Martin, "Benchmark antenna problems for evolutionary optimization algorithms," EEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1111-1121, Apr. 2007.
doi:10.1109/TAP.2007.893396

11. Bandler, J. W., R. M. Biernacki, S. H. Chen, P. A. Grobelny, and Y. Shen, "Yield driven electromagnetic optimization via multilevel multidimensional models," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 12, 2269-2278, Dec. 1993.
doi:10.1109/22.260717

12. Bandler, J. W., R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H. Hemmers, "Space mapping technique for electromagnetic optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 2536-2544, Dec. 1994.
doi:10.1109/22.339794

13. Bandler, J. W., R. M. Biernacki, S. H. Chen, P. A. Grobelny, R. H. Hemmers, and K. Madsen, "Electromagnetic optimization exploiting aggressive space mapping," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 12, 2874-2882, Dec. 1995.
doi:10.1109/22.475649

14. Bakr, M. H., J. W. Bandler, R. M. Biernacki, S. H. Chen, and K. Madsen, "A trust region aggressive space mapping algorithm for EM optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 12, 2412-2425, Dec. 1998.
doi:10.1109/22.739229

15. Bakr, M. H., J. W. Bandler, N. Georgieva, and K. Madsen, "A hybrid aggressive space-mapping algorithm for EM optimization," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 12, 2440-2449, Dec. 1999.
doi:10.1109/22.808991

16. Hoole, S. R. H. and M. K. Haldar, "Optimization of electromagnetic devices: Circuit models, neural networks and gradient methods in concert," IEEE Transactions on Magnetics, Vol. 31, No. 3, 2016-2019, May 1995.
doi:10.1109/20.376439

17. Mohammed, O. A., D. C. Park, and F. G. Uler, "Design optimization of electromagnetic devices using artificial neural networks," IEEE Transactions on Magnetics, Vol. 28, No. 5, 2805-2807, Sep. 1992.
doi:10.1109/20.179633

18. Hawe, G. and J. Sykulski, "Considerations of accuracy and uncertainty with kriging surrogate models in single-objective electromagnetic design optimization," IET on Science, Measurement & Technology, Vol. 1, No. 1, 37-47, Jan. 2007.
doi:10.1049/iet-smt:20060035

19. Koziel, S. and J. W. Bandler, "Space-mapping optimization with adaptive surrogate model," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 3, 541-547, Mar. 2007.
doi:10.1109/TMTT.2006.890524

20. Bakr, M. H., J. W. Bandler, K. Madsen, J. E. Rayas-Sanchez, and J. Sondergaard, "Space-mapping optimization of microwave circuits exploiting surrogate models," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 12, 2297-2306, Dec. 2000.
doi:10.1109/22.898978

21. Adve, R. S., T. K. Sarkar, S. M. Rao, E. K. Miller, and D. R. Pflug, "Application of the Cauchy method for extrapolating/interpolating narrow-band system responses," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 837-845, May 1997.
doi:10.1109/22.575608

22. Kottapalli, K., T. K. Sarkar, Y. Hua, E. K. Miller, and G. J. Burke, "Accurate computation of wide-band response of electromagnetic systems utilizing narrow-band information," EEE Transactions on Microwave Theory and Techniques, Vol. 39, 682-687, Apr. 1991.
doi:10.1109/22.76432

23. Appiah, R., "Cauchy interpolation in linear system reduction," IEEE Transactions on Automatic Control, Vol. 22, No. 6, 974-976, Dec. 1977.
doi:10.1109/TAC.1977.1101667

24. Peik, S. F., R. R. Mansour, and Y. L. Chow, "Multidimensional Cauchy method and adaptive sampling for an accurate microwave circuit modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, No. 12, 2364-2371, Dec. 1998.
doi:10.1109/22.739224

25. De Geest, J., T. Dhaene, N. Fache, and D. De Zutter, "Adaptive CAD-model building algorithm for general planar microwave structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 9, 1801-1809, Sep. 1999.
doi:10.1109/22.788515

26. Lehmensiek, R. and P. Meyer, "Creating accurate multivariate rational interpolation models of microwave circuits by using efficient adaptive sampling to minimize the number of computational electromagnetic analyses," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 8, 1419-1430, Aug. 2001.
doi:10.1109/22.939922

27. Lamecki, A., P. Kozakowski, and M. Mrozowski, "Efficient implementation of the Cauchy method for automated CAD-model construction," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 7, 268-270, Jul. 2003.
doi:10.1109/LMWC.2003.815185

28. Cuyt, A., R. B. Lenin, S. Becuwe, and B. Verdonk, "Adaptive multivariate rational data fitting with applications in electromagnetics," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 2265-2274, May 2006.
doi:10.1109/TMTT.2006.873637

29. Shaker, G. S. A., M. H. Bakr, N. Sangary, and S. Safavi-Naeini, "Space mapping-based optimization exploiting tolerant Cauchy approximations," IEEE International Microwave Symposium, Jun. 2009.

30. Bertsekas, D. P., Nonlinear Programming, Athena Scientific, Belmont, Massachusetts, 1995.

31. Boyd, S. and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

32. Mosek 5.0.0.93, Mosek ApS, 2008, Available: www.mosek.com.

33. TOMLAB v6.1, Tomlab Optimization, 2008, Available: www.tomopt.com.

34. MATLAB R2008a The MathWorks, 2008.

35. Koh, C. S., S. Y. Hahn, T. K. Chung, and H. K. Jung, "A sensitivity analysis using boundary element method for shape optimization of electromagnetic devices," IEEE Transactions on Magnetics, Vol. 28, No. 2, 1577-1580, Mar. 1992.
doi:10.1109/20.124000

36. Ansoft Designer v3.5, Ansoft, LLC, 2008.

37. Ansoft HFSS v11.0, Ansoft, LLC, 2008.

38. COMSOL MULTIPHYSICS v3.4, COMSOL Group, 2008.

39. CST Microwave Studio 2008, CST, 2008.

40. Sonnet v11.0, Sonnet, 2008.

41. SEMCAD 13.4 Bernina, Schmid & Partner Engineering AG, 2008.

42. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley-Interscience, 2005.

43. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, USA, 2001.

44. Misra, I. S., R. S. Chakrabarty, and B. B. Mangaraj, "Design, analysis and optimization of V-dipole and its three-element Yagi-Uda array," Progress In Electromagnetics Research, Vol. 66, 137-156, 2006.
doi:10.2528/PIER06102604

45. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, USA, 2003.

46. Ang, B.-K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5-6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909