Vol. 63
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-04-13
Rectangular Dielectric Resonator Antenna Array for 28 GHz Applications
By
Progress In Electromagnetics Research C, Vol. 63, 53-61, 2016
Abstract
In this paper, a Rectangular Dielectric Resonator Antenna (RDRA) with a modified feeding line is designed and investigated at 28 GHz. The modified feed line is designed to excite the DR with relative permittivity of 10 which contributes to a wide bandwidth operation. The proposed single RDRA has been fabricated and mounted on a RT/Duroid 5880 (εr=2.2 and tan δ=0.0009) substrate. The optimized single element has been applied to array structure to improve the gain and achieve the required gain performance. The radiation pattern, impedance bandwidth and gain are simulated and measured accordingly. The number of elements and element spacing are studied for an optimum performance. The proposed antenna obtains a reflection coefficient response from 27.0 GHz to 29.1 GHz which cover the desired frequency band. This makes the proposed antenna achieve 2.1 GHz impedance bandwidth and gain of 12.1 dB. Thus, it has potential for millimeter wave and 5G applications.
Citation
Nuramirah Mohd Nor, Mohd Haizal Jamaluddin, Muhammad Ramlee Kamarudin, and Mohsen Khalily, "Rectangular Dielectric Resonator Antenna Array for 28 GHz Applications," Progress In Electromagnetics Research C, Vol. 63, 53-61, 2016.
doi:10.2528/PIERC16022902
References

1. Rappaport, T., S. Sun, R. Mayzus, et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

2. Sulyman, A. I., A. T. Nassar, M. K. Samimi, et al. "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands," IEEE Commun. Mag., 78-86, 2014.
doi:10.1109/MCOM.2014.6894456

3. Wong, H., K. B. Ng, C. H. Chan, and K. M. Luk, "Printed antennas for millimeter wave application," International Workshop on Antenna Tech., 411-414, 2013.

4. Chin, K. S., H. T. Chang, J. A. Liu, et al. "28-GHz patch antenna arrays with PCB and LTCC substrates," Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, Vol. 1, 355-358, 2011.
doi:10.1109/CSQRWC.2011.6036957

5. Tong, K. F., K. Li, and T. Matsui, "Performance of millimeter-wave coplanar patch antennas on low-k materials," PIERS Online, Vol. 1, No. 1, 46-47, 2005.
doi:10.2529/PIERS041205194251

6. Wang, D., H. Wong, K. B. Ng, and C. H. Chan, "Wideband shorted higher-order mode millimeter- wave patch antenna," IEEE Antennas and Propagation Society International Symposium, 5-6, 2012.

7. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley-Interscience, New Jersey, 2005.

8. Jamaluddin, M. H., R. Gillard, R. Sauleau, et al. "A dielectric resonator antenna (DRA) re ecarray," Proc. European Microwave Conference, 25-28, 2009.

9. Shahadan, N. H., M. R. Kamarudin, N. A. Zainal, et al. "Investigation on feeding techniques for rectangular dielectric resonator antenna in higher-order mode for 5G applications," Applied Mechanics and Materials, Vol. 781, 2015.

10. Pan, Y. M., K. W. Leung, and K. M. Luk, "Design of the millimeter-wave rectangular dielectric resonator antenna using a higher-order mode," IEEE Trans. Antennas and Propag., Vol. 59, 2011.

11. Jamaluddin, M. H., R. Gillard, R. Sauleau, et al. "Dielectric resonator antenna re ectarray in Ka-band," Antenna and Propagation Society International Symposium (APSURSI), 1-4, 2010.

12. Bijumon, P. V., A. P. Freundorfer, M. Sayer, and Y. M. M. Antar, "On-chip silicon integrated cylindrical dielectric resonator antenna for millimeter wave applications," Signals, Systems and Electronic International Symposium, 489-492, 2007.

13. Wang, K. X. and H. Wong, "A circularly polarized antenna by using rotated-stair dielectric resonator," IEEE Antennas and Wireless Propag Letters, Vol. 14, 787-790, 2015.
doi:10.1109/LAWP.2014.2385475

14. Petosa, A., Dielectric Resonator Antenna Handbook, Artech House, Norwood, MA, 2007.

15. Luk, K. M. and K. W. Leung (eds.), Dielectric Resonator Antennas, Research Studies Press, London, UK, 2003.

16. Petosa, A. and A. Ittipiboon, "Dielectric resonator antennas: A historical review and the current state of the art," IEEE Antennas and Propag. Mag., Vol. 52, 2010.

17. Costanzo, S., I. Venneri, G. Di Massa, and G. Amendola, "Hybrid array antenna for broadband millimeter-wave applications," Progress In Electromagnetics Research, 173-183, 2008.
doi:10.2528/PIER08051404

18. Lai, Q. H., G. Almpanis, C. Fumeaux, et al. "Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3589-3592, 2008.
doi:10.1109/TAP.2008.2005551

19. Mongia, R. K. and A. Ittipiboon, "Theoretical and experimental investigation on rectangular dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 45, 1997.

20., CST MICROWAVE STUDIO 2014, CST Computer Simulation Technology AG, 2015.

21. Maina, I., T. A. Rahman, and M. Khalily, "Bandwidth enhanced and sidelobes level reduced radial line slot array antenna at 28 GHz for 5G next generation mobile communication," ARPN Journal of Engin. Applied Sciences, Vol. 10, 2015.