Journal Home > Volume 2 , Issue 2

Solid polymer electrolytes (SPEs) possess comprehensive advantages such as high flexibility, low interfacial resistance with the electrodes, excellent film-forming ability, and low price, however, their applications in solid-state batteries are mainly hindered by the insufficient ionic conductivity especially below the melting temperatures, etc. To improve the ion conduction capability and other properties, a variety of modification strategies have been exploited. In this review article, we scrutinize the structure characteristics and the ion transfer behaviors of the SPEs (and their composites) and then disclose the ion conduction mechanisms. The ion transport involves the ion hopping and the polymer segmental motion, and the improvement in the ionic conductivity is mainly attributed to the increase of the concentration and mobility of the charge carriers and the construction of fast-ion pathways. Furthermore, the recent advances on the modification strategies of the SPEs to enhance the ion conduction from copolymer structure design to lithium salt exploitation, additive engineering, and electrolyte micromorphology adjustion are summarized. This article intends to give a comprehensive, systemic, and profound understanding of the ion conduction and enhancement mechanisms of the SPEs for their viable applications in solid-state batteries with high safety and energy density.


menu
Abstract
Full text
Outline
About this article

Solid polymer electrolytes: Ion conduction mechanisms and enhancement strategies

Show Author's information Dongmei Zhang§Xianglong Meng§Wenyan Hou§Weihao HuJinshan MoTianrong YangWendi ZhangQianxiao FanLehao Liu( )Bing JiangLihua ChuMeicheng Li( )
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing 102206, China

§ Dongmei Zhang, Xianglong Meng, and Wenyan Hou contributed equally to this work.

Abstract

Solid polymer electrolytes (SPEs) possess comprehensive advantages such as high flexibility, low interfacial resistance with the electrodes, excellent film-forming ability, and low price, however, their applications in solid-state batteries are mainly hindered by the insufficient ionic conductivity especially below the melting temperatures, etc. To improve the ion conduction capability and other properties, a variety of modification strategies have been exploited. In this review article, we scrutinize the structure characteristics and the ion transfer behaviors of the SPEs (and their composites) and then disclose the ion conduction mechanisms. The ion transport involves the ion hopping and the polymer segmental motion, and the improvement in the ionic conductivity is mainly attributed to the increase of the concentration and mobility of the charge carriers and the construction of fast-ion pathways. Furthermore, the recent advances on the modification strategies of the SPEs to enhance the ion conduction from copolymer structure design to lithium salt exploitation, additive engineering, and electrolyte micromorphology adjustion are summarized. This article intends to give a comprehensive, systemic, and profound understanding of the ion conduction and enhancement mechanisms of the SPEs for their viable applications in solid-state batteries with high safety and energy density.

Keywords: ionic conductivity, solid polymer electrolytes, modification strategies, solid-state lithium-ion batteries, electrolyte microstructure

References(244)

[1]

Yue, J. P.; Yan, M.; Yin, Y. X.; Guo, Y. G. Progress of the interface design in all-solid-state Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707533.

[2]

Schnell, J.; Gunther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G. All-solid-state lithium-ion and lithium metal batteries-paving the way to large-scale production. J. Power Sources 2018, 382, 160–175.

[3]

Nitta, N.; Wu, F. X.; Lee, J. T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264.

[4]

Lv, F.; Wang, Z. Y.; Shi, L. Y.; Zhu, J. F.; Edström, K.; Mindemark, J.; Yuan, S. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. J. Power Sources 2019, 441, 227175.

[5]

Liu, Y.; Xu, B. Q.; Zhang, W. Y.; Li, L. L.; Lin, Y. H.; Nan, C. W. Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries. Small 2020, 16, 1902813.

[6]

Sastre, J.; Futscher, M. H.; Pompizi, L.; Aribia, A.; Priebe, A.; Overbeck, J.; Stiefel, M.; Tiwari, A. N.; Romanyuk, Y. E. Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte. Commun. Mater. 2021, 2, 76.

[7]

Wang, Y.; Zanelotti, C. J.; Wang, X. E.; Kerr, R.; Jin, L. Y.; Kan, W. H.; Dingemans, T. J.; Forsyth, M.; Madsen, L. A. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 2021, 20, 1255–1263.

[8]

Raj, V.; Venturi, V.; Kankanallu, V. R.; Kuiri, B.; Viswanathan, V.; Aetukuri, N. P. B. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 2022, 21, 1050–1056.

[9]

Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

[10]

Ko, J.; Yoon, Y. S. Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries? Ceram. Int. 2019, 45, 30–49.

[11]

Lee, M. J.; Han, J.; Lee, K.; Lee, Y. J.; Kim, B. G.; Jung, K. N.; Kim, B. J.; Lee, S. W. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 2022, 601, 217–222.

[12]

Ye, L. H.; Li, X. A dynamic stability design strategy for lithium metal solid state batteries. Nature 2021, 593, 218–222.

[13]

Shimonishi, Y.; Zhang, T.; Imanishi, N.; Im, D.; Lee, D. J.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Sammes, N. A study on lithium/air secondary batteries—Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J. Power Sources 2011, 196, 5128–5132.

[14]

Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem., Int. Ed. 2007, 46, 7778–7781.

[15]

Stramare, S.; Thangadurai, V.; Weppner, W. Lithium lanthanum titanates: A review. Chem. Mater. 2003, 15, 3974–3990.

[16]

Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

[17]

Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 2005, 17, 918–921.

[18]

Efthimiadis, J.; Annat, G. J.; Efthimiadis, J.; Forsyth, M.; MacFarlane, D. R. Solid state ion transport and phase behaviour in composites of N, N-methyl propylpyrrolidinium tetrafluoroborate and amorphous polyethylene oxide. Phys. Chem. Chem. Phys. 2003, 5, 5558–5564.

[19]

Alarco, P. J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M. The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nat. Mater. 2004, 3, 476–481.

[20]

Zhao, B. Q.; Yang, M. X.; Li, J. Y.; Li, S. M.; Zhang, G.; Liu, S. Q.; Cui, Y. H.; Liu, H. Cellulose-based plastic crystal electrolyte membranes with enhanced interface for solid-state lithium batteries. Energy Technol. 2021, 9, 2100114.

[21]

Wang, Z. Q.; Tan, R.; Wang, H. B.; Yang, L. Y.; Hu, J. T.; Chen, H. B.; Pan, F. A metal-organic-framework-based electrolyte with nanowetted interfaces for high-energy-density solid-state lithium battery. Adv. Mater. 2018, 30, 1704436.

[22]

Shen, L.; Wu, H. B.; Liu, F.; Brosmer, J. L.; Shen, G. R.; Wang, X. F.; Zink, J. I.; Xiao, Q. F.; Cai, M.; Wang, G. et al. Creating lithium-ion electrolytes with biomimetic ionic channels in metal-organic frameworks. Adv. Mater. 2018, 30, 1707476.

[23]

Jeong, K.; Park, S.; Jung, G. Y.; Kim, S. H.; Lee, Y. H.; Kwak, S. K.; Lee, S. Y. Solvent-free, single lithium-ion conducting covalent organic frameworks. J. Am. Chem. Soc. 2019, 141, 5880–5885.

[24]

Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589.

[25]

Armand, M. Polymer solid electrolytes-an overview. Solid State Ionics 1983, 9–10, 745–754.

[26]

Feuillade, G.; Perche, P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem. 1975, 5, 63–69.

[27]

Xue, Z. G.; He, D.; Xie, X. L. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253.

[28]

Long, L. Z.; Wang, S. J.; Xiao, M.; Meng, Y. Z. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069.

[29]

Young, W. S.; Kuan, W. F.; Epps Ⅲ, T. H. Block copolymer electrolytes for rechargeable lithium batteries. J. Polym. Sci. Part B Pol. Phys. 2014, 52, 1–16.

[30]

Zhou, Q.; Ma, J.; Dong, S. M.; Li, X. F.; Cui, G. L. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv. Mater. 2019, 31, 1902029.

[31]

Bannister, D. J.; Davies, G. R.; Ward, I. M.; McIntyre, J. E. Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers. Polymer 1984, 25, 1291–1296.

[32]

Reinoso, D. M.; Frechero, M. A. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Mater. 2022, 52, 430–464.

[33]

Borodin, O.; Smith, G. D. Mechanism of ion transport in amorphous poly(ethylene oxide)/litfsi from molecular dynamics simulations. Macromolecules 2006, 39, 1620–1629.

[34]

Mao, G. M.; Perea, R. F.; Howells, W. S.; Price, D. L.; Saboungi, M. L. Relaxation in polymer electrolytes on the nanosecond timescale. Nature 2000, 405, 163–165.

[35]

Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114–143.

[36]

Sun, C. W.; Liu, J.; Gong, Y. D.; Wilkinson, D. P.; Zhang, J. J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33, 363–386.

[37]

Dirican, M.; Yan, C. Y.; Zhu, P.; Zhang, X. W. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R Rep. 2019, 136, 27–46.

[38]

Stoeva, Z.; Martin-Litas, I.; Staunton, E.; Andreev, Y. G.; Bruce, P. G. Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb. J. Am. Chem. Soc. 2003, 125, 4619–4626.

[39]

Gadjourova, Z.; Andreev, Y. G.; Tunstall, D. P.; Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 2001, 412, 520–523.

[40]

Aziz, S. B.; Woo, T. J.; Kadir, M. F. Z.; Ahmed, H. M. A conceptual review on polymer electrolytes and ion transport models. J. Sci. Adv. Mater. Dev. 2018, 3, 1–17.

[41]

Ratner, M. A.; Johansson, P.; Shriver, D. F. Polymer electrolytes: Ionic transport mechanisms and relaxation coupling. MRS Bull. 2011, 25, 31–37.

[42]

Yang, H.; Wu, N. Q. Ionic conductivity and ion transport mechanisms of solid-state lithium-ion battery electrolytes: A review. Energy Sci. Eng. 2022, 10, 1643–1671.

[43]

Baskaran, R.; Selvasekarapandian, S.; Kuwata, N.; Kawamura, J.; Hattori, T. Structure, thermal, and transport properties of PVAc-LiClO4 solid polymer electrolytes. J. Phys. Chem. Solids 2007, 68, 407–412.

[44]

Zhang, C. H.; Gamble, S.; Ainsworth, D.; Slawin, A. M. Z.; Andreev, Y. G.; Bruce, P. G. Alkali metal crystalline polymer electrolytes. Nat. Mater. 2009, 8, 580–584.

[45]

Liu, M.; Zhang, S. N.; van Eck, E. R. H.; Wang, C.; Ganapathy, S.; Wagemaker, M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 2022, 17, 959–967.

[46]

Xia, Y. Y.; Xu, N.; Du, L. L.; Cheng, Y.; Lei, S. L.; Li, S. J.; Liao, X. B.; Shi, W. C.; Xu, L.; Mai, L. Q. Rational design of ion transport paths at the interface of metal-organic framework modified solid electrolyte. ACS Appl. Mater. Interfaces 2020, 12, 22930–22938.

[47]

Zhang, X. X.; Oh, T. S.; Fergus, J. W. Densification of ta-doped garnet-type Li6.75La3Zr1.75Ta0.25O12 solid electrolyte materials by sintering in a lithium-rich air atmosphere. J. Electrochem. Soc. 2019, 166, A3753–A3759.

[48]

Yang, L.; Dai, Q. S.; Liu, L.; Shao, D. S.; Luo, K. L.; Jamil, S.; Liu, H.; Luo, Z. G.; Chang, B. B.; Wang, X. Y. Rapid sintering method for highly conductive Li7La3Zr2O12 ceramic electrolyte. Ceram Int. 2020, 46, 10917–10924.

[49]

Mackanic, D. G.; Michaels, W.; Lee, M.; Feng, D. W.; Lopez, J.; Qin, J.; Cui, Y.; Bao, Z. N. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte. Adv. Energy Mater. 2018, 8, 1800703.

[50]

Fu, J. F.; Lu, Q.; Shang, D. P.; Chen, L. Y.; Jiang, Y.; Xu, Y. F.; Yin, J. T.; Dong, X.; Deng, W.; Yuan, S. A novel room temperature POSS ionic liquid-based solid polymer electrolyte. J. Mater. Sci. 2018, 53, 8420–8435.

[51]

Li, Y. H.; Zhang, L. B.; Sun, Z. J.; Gao, G. X.; Lu, S. Y.; Zhu, M.; Zhang, Y. F.; Jia, Z. Y.; Xiao, C. H.; Bu, H. T. et al. Hexagonal boron nitride induces anion trapping in a polyethylene oxide based solid polymer electrolyte for lithium dendrite inhibition. J. Mater. Chem. A 2020, 8, 9579–9589.

[52]

Mindemark, J.; Sun, B.; Törmä, E.; Brandell, D. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J. Power Sources 2015, 298, 166–170.

[53]

Tang, W. J.; Tang, S.; Zhang, C. J.; Ma, Q. T.; Xiang, Q.; Yang, Y. W.; Luo, J. Y. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 2018, 8. 1800866.

[54]

Utpalla, P.; Sharma, S. K.; Sudarshan, K.; Deshpande, S. K.; Sahu, M.; Pujari, P. K. Investigating the correlation of segmental dynamics, free volume characteristics, and ionic conductivity in poly(ethylene oxide)-based electrolyte: A broadband dielectric and positron annihilation spectroscopy study. J. Phys. Chem. C 2020, 124, 4489–4501.

[55]

Devaux, D.; Bouchet, R.; Glé, D.; Denoyel, R. Mechanism of ion transport in PEO/LiTFSI complexes: Effect of temperature, molecular weight, and end groups. Solid State Ionics 2012, 227, 119–127.

[56]

Yahsi, U.; Deligöz, H.; Tav, C.; Ulutaş, K.; Değer, D.; Yılmaztürk, S.; Erdemci, G.; Coşkun, B.; Yılmazoğlu, M.; Yakut, Ş. Ionic conductivity of PVDF-co-HFP/LiClO4 in terms of free volume defects probed by positron annihilation lifetime spectroscopy. Radiat. Eff. Defect Solids 2019, 174, 214–228.

[57]

Williams, M. L.; Landel, R. F.; Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 2002, 77, 3701–3707.

[58]

Arya, A.; Sharma, A. L. Polymer electrolytes for lithium ion batteries: A critical study. Ionics 2017, 23, 497–540.

[59]

Carvalho, L. M.; Guégan, P.; Cheradame, H.; Gomes, A. S. Variation of the mesh size of PEO-based networks filled with TFSILi: From an Arrhenius to WLF type conductivity behavior. Eur. Polym. J. 2000, 36, 401–409.

[60]

Carvalho, L. M.; Guegan, P.; Cheradame, H.; Gomes, A. S. Synthesis and electrochemical characterization of crosslinked poly(ethylene oxide) containing LiN(CF3SO2)2. Eur. Polym. J. 1997, 33, 1741–1745.

[61]

Liang, C. C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. J. Electrochem. Soc. 1973, 120, 1289.

[62]

Phipps, J. B.; Whitmore, D. H. Interfacial conduction in lithium iodide containing inert oxides. J. Power Sources 1983, 9, 373–378.

[63]

Nakamura, O.; Goodenough, J. B. Conductivity enhancement of lithium bromide monohydrate by Al2O3 particles. Solid State Ionics 1982, 7, 119–123.

[64]

Bunde, A.; Dieterich, W.; Roman, E. Dispersed ionic conductors and percolation theory. Phys. Rev. Lett. 1985, 55, 5–8.

[65]

Liu, W.; Lee, S. W.; Lin, D. C.; Shi, F. F.; Wang, S.; Sendek, A. D.; Cui, Y. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2017, 2, 17035.

[66]

Zhang, X. K.; Xie, J.; Shi, F. F.; Lin, D. C.; Liu, Y. Y.; Liu, W.; Pei, A.; Gong, Y. J.; Wang, H. X.; Liu, K. et al. Vertically aligned and continuous nanoscale ceramic–polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 2018, 18, 3829–3838.

[67]

Kalnaus, S.; Sabau, A. S.; Tenhaeff, W. E.; Dudney, N. J.; Daniel, C. Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria. J. Power Sources 2012, 201, 280–287.

[68]

Liu, M.; Cheng, Z.; Ganapathy, S.; Wang, C.; Haverkate, L. A.; Tułodziecki, M.; Unnikrishnan, S.; Wagemaker, M. Tandem interface and bulk Li-ion transport in a hybrid solid electrolyte with microsized active filler. ACS Energy Lett. 2019, 4, 2336–2342.

[69]

Wang, W. M.; Yi, E.; Fici, A. J.; Laine, R. M.; Kieffer, J. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J. Phys. Chem. C 2017, 121, 2563–2573.

[70]

Yang, T.; Zheng, J.; Cheng, Q.; Hu, Y. Y.; Chan, C. K. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: Mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 2017, 9, 21773–21780.

[71]

Xu, H. H.; Chien, P. H.; Shi, J. J.; Li, Y. T.; Wu, N.; Liu, Y. Y.; Hu, Y. Y.; Goodenough, J. B. High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc. Natl. Acad. Sci. USA 2019, 116, 18815–18821.

[72]

Zheng, J.; Wang, P. B.; Liu, H. Y.; Hu, Y. Y. Interface-enabled ion conduction in Li10GeP2S12-poly(ethylene oxide) hybrid electrolytes. ACS Appl. Energy Mater. 2019, 2, 1452–1459.

[73]

Liu, L. H.; Lyu, J.; Mo, J. S.; Yan, H. J.; Xu, L. L.; Peng, P.; Li, J. R.; Jiang, B.; Chu, L. H.; Li, M. C. Comprehensively-upgraded polymer electrolytes by multifunctional aramid nanofibers for stable all-solid-state Li-ion batteries. Nano Energy 2020, 69, 104398.

[74]

Borodin, O.; Smith, G. D.; Bandyopadhyaya, R.; Redfern, P.; Curtiss, L. A. Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4. Modell. Simul. Mater. Sci. Eng. 2004, 12, S73–S89.

[75]

Hu, C. J.; Shen, Y. B.; Shen, M.; Liu, X.; Chen, H. W.; Liu, C. H.; Kang, T.; Jin, F.; Li, L.; Li, J. et al. Superionic conductors via bulk interfacial conduction. J. Am. Chem. Soc. 2020, 142, 18035–18041.

[76]

Fang, R. Y.; Xu, B. Y.; Grundish, N. S.; Xia, Y.; Li, Y. T.; Lu, C. W.; Liu, Y. J.; Wu, N.; Goodenough, J. B. Li2S6-integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries. Angew. Chem., Int. Ed. 2021, 60, 17701–17706.

[77]

Zheng, Y.; Yao, Y. Z.; Ou, J. H.; Li, M.; Luo, D.; Dou, H. Z.; Li, Z. Q.; Amine, K.; Yu, A. P.; Chen, Z. W. A review of composite solid-state electrolytes for lithium batteries: Fundamentals, key materials, and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839.

[78]

Yang, L. X.; Luo, D.; Zheng, Y.; Yang, T. Z.; Ma, Q. Y.; Nie, Y. H.; Dou, H. Z.; Zhang, Y. G.; Huang, R.; Yu, A. P. et al. Heterogeneous nanodomain electrolytes for ultra-long-life all-solid-state lithium-metal batteries. Adv. Funct. Mater. 2022, 32, 2204778.

[79]

Li, R. Y.; Hua, H. M.; Zeng, Y. J.; Yang, J.; Chen, Z. Q.; Zhang, P.; Zhao, J. B. Promote the conductivity of solid polymer electrolyte at room temperature by constructing a dual range ionic conduction path. J. Energy Chem. 2022, 64, 395–403.

[80]

Meabe, L.; Huynh, T. V.; Lago, N.; Sardon, H.; Li, C. M.; O'Dell, L. A.; Armand, M.; Forsyth, M.; Mecerreyes, D. Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochim. Acta 2018, 264, 367–375.

[81]

Vancaeyzeele, C.; Nguyen, G. T. M.; Michan, A. L.; Viallon, M.; Michal, C. A.; Vidal, F. Lithium-based oligomer ionic liquid for solvent-free conducting materials. Polymer 2018, 142, 337–347.

[82]

Zeng, Z. Q.; Chen, X.; Sun, M. J.; Jiang, Z. P.; Hu, W.; Yu, C.; Cheng, S. J.; Xie, J. Nanophase-separated, elastic epoxy composite thin film as an electrolyte for stable lithium metal batteries. Nano Lett. 2021, 21, 3611–3618.

[83]

Aldalur, I.; Martinez-Ibañez, M.; Piszcz, M.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes. J. Power Sources 2018, 383, 144–149.

[84]

Guan, T. Y.; Qian, S. J.; Guo, Y. K.; Cheng, F. Y.; Zhang, W. Q.; Chen, J. Star brush block copolymer electrolytes with high ambient-temperature ionic conductivity for quasi-solid-state lithium batteries. ACS Mater. Lett. 2019, 1, 606–612.

[85]

Wang, S.; Wang, A. L.; Yang, C. K.; Gao, R.; Liu, X.; Chen, J.; Wang, Z. N.; Zeng, Q. H.; Liu, X. F.; Zhou, H. H. et al. Six-arm star polymer based on discotic liquid crystal as high performance all-solid-state polymer electrolyte for lithium-ion batteries. J. Power Sources 2018, 395, 137–147.

[86]

Khurana, R.; Schaefer, J. L.; Archer, L. A.; Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: A new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 2014, 136, 7395–7402.

[87]

Tong, Y. F.; Lyu, H.; Xu, Y. Z.; Prasad Thapaliya, B.; Li, P. P.; Sun, X. G.; Dai, S. All-solid-state interpenetrating network polymer electrolytes for long cycle life of lithium metal batteries. J. Mater. Chem. A 2018, 6, 14847–14855.

[88]

Park, C. K.; Zhang, Z. W.; Xu, Z. Q.; Kakirde, A.; Kang, K.; Chai, C.; Au, G.; Cristo, L. Variables study for the fast charging lithium ion batteries. J. Power Sources 2007, 165, 892–896.

[89]

Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H. K. Lithium-ion conducting electrolyte salts for lithium batteries. Chem. —Eur. J. 2011, 17, 14326–14346.

[90]

Banitaba, S. N.; Semnani, D.; Fakhrali, A.; Ebadi, S. V.; Heydari-Soureshjani, E.; Rezaei, B.; Ensafi, A. A. Electrospun PEO nanofibrous membrane enable by LiCl, LiClO4, and LiTFSI salts: A versatile solvent-free electrolyte for lithium-ion battery application. Ionics 2020, 26, 3249–3260.

[91]

Arya, A.; Sharma, A. L. A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: A topical review. J. Mater. Sci. 2020, 55, 6242–6304.

[92]

Yang, H.; Zhuang, G. V.; Ross, P. N. Jr. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. J. Power Sources 2006, 161, 573–579.

[93]

Ibrahim, S.; Yassin, M. M.; Ahmad, R.; Johan, M. R. Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 2011, 17, 399–405.

[94]

Varishetty, M. M.; Qiu, W. L.; Gao, Y.; Chen, W. Structure, electrical, and optical properties of (PVA/LiAsF6) polymer composite electrolyte films. Polym. Eng. Sci. 2010, 50, 878–884.

[95]

Zhang, S. S.; Xu, K.; Jow, T. R. Study of LiBF4 as an electrolyte salt for a Li-ion battery. J. Electrochem. Soc. 2002, 149, A586–A590.

[96]

Wang, X. Y.; Li, S. Y.; Zhang, W. D.; Wang, D.; Shen, Z. Y.; Zheng, J. P.; Zhuang, H. L.; He, Y.; Lu, Y. Y. Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability. Nano Energy 2021, 89, 106353.

[97]

Liu, Y.; Xie, K.; Pan, Y.; Li, Y. J.; Lu, W.; Liu, S. K.; Zheng, C. M. Impacts of lithium tetrafluoroborate and lithium difluoro(oxalate)borate as additives on the storage life of Li-ion battery at elevated temperature. Ionics 2018, 24, 1617–1628.

[98]

Whba, R. A. G.; TianKhoon, L.; Su'ait, M. S.; Rahman, M. Y. A.; Ahmad, A. Influence of binary lithium salts on 49% poly(methyl methacrylate) grafted natural rubber based solid polymer electrolytes. Arab. J. Chem. 2020, 13, 3351–3361.

[99]

Fahmi, E. M.; Ahmad, A.; Nazeri, N. N. M.; Hamzah, H.; Razali, H.; Rahman, M. Y. A. Effect of LiBF4 salt concentration on the properties of poly (ethylene oxide)-based composite polymer electrolyte. Int. J. Electrochem. Sci. 2012, 7, 5798–5804.

[100]

Noor, S. A. M.; Ahmad, A.; Talib, I. A.; Rahman, M. Y. A. Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics 2010, 16, 161–170.

[101]

Zygadło-Monikowska, E.; Florjańczyk, Z.; Rogalska-Jońska, E.; Werbanowska, A.; Tomaszewska, A.; Langwald, N.; Golodnitsky, D.; Peled, E.; Kovarsky, R.; Chung, S. H. et al. Lithium ion transport of solid electrolytes based on PEO/CF3SO3Li and aluminum carboxylate. J. Power Sources 2007, 173, 734–742.

[102]

Radzir, N. N. M.; Hanifah, S. A.; Ahmad, A.; Hassan, N. H.; Bella, F. Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate. J. Solid State Electr. 2015, 19, 3079–3085.

[103]

Han, H. B.; Zhou, S. S.; Zhang, D. J.; Feng, S. W.; Li, L. F.; Liu, K.; Feng, W. F.; Nie, J.; Li, H.; Huang, X. J. et al. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. J. Power Sources 2011, 196, 3623–3632.

[104]

Itoh, T.; Nakamura, K.; Uno, T.; Kubo, M. Thermal and electrochemical properties of poly(2,2-dimethoxypropylene carbonate)-based solid polymer electrolyte for polymer battery. Solid State Ionics 2018, 317, 69–75.

[105]

Appetecchi, G. B.; Zane, D.; Scrosati, B. PEO-based electrolyte membranes based on LiBC4O8 salt. J. Electrochem. Soc. 2004, 151, A1369–A1374.

[106]

Barbosa, P. C.; Rodrigues, L. C.; Silva, M. M.; Smith, M. J. Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ionics 2011, 193, 39–42.

[107]

Perumal, P.; Christopher Selvin, P.; Selvasekarapandian, S.; Sivaraj, P. Structural and electrical properties of bio-polymer pectin with LiClO4 solid electrolytes for lithium ion polymer batteries. Mater. Today Proc. 2019, 8, 196–202.

[108]

Chong, W. G.; Osman, Z. The effect of carbonate-phthalate plasticizers on structural, morphological, and electrical properties of polyacrylonitrile-based solid polymer electrolytes. J. Polym. Res. 2014, 21, 381.

[109]

Zhang, Z. Y.; Antonio, R. G.; Choy, K. L. Boron nitride enhanced polymer/salt hybrid electrolytes for all-solid-state lithium ion batteries. J. Power Sources 2019, 435, 226736.

[110]

Tao, S. D.; Li, J.; Hu, R.; Wang, L. H.; Chi, Z. X.; Li, T. F. 3Li2S-2MoS2 filled composite polymer PVDF-HFP/LiODFB electrolyte with excellent interface performance for lithium metal batteries. Appl. Surf. Sci. 2021, 536, 147794.

[111]

Baskoro, F.; Wong, H. Q.; Yen, H. J. Strategic structural design of a gel polymer electrolyte toward a high efficiency lithium-ion battery. ACS Appl. Energy Mater. 2019, 2, 3937–3971.

[112]

Banitaba, S. N.; Semnani, D.; Heydari-Soureshjani, E.; Rezaei, B.; Ensafi, A. A. The effect of concentration and ratio of ethylene carbonate and propylene carbonate plasticizers on characteristics of the electrospun PEO-based electrolytes applicable in lithium-ion batteries. Solid State Ionics 2020, 347, 115252.

[113]

Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 2018, 8, 1702657.

[114]

Pan, J.; Zhang, Y. C.; Wang, J.; Bai, Z. C.; Cao, R. G.; Wang, N. N.; Dou, S. X.; Huang, F. Q. A quasi-double-layer solid electrolyte with adjustable interphases enabling high-voltage solid-state batteries. Adv. Mater. 2022, 34, 2107183.

[115]

Klongkan, S.; Pumchusak, J. Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal, and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim. Acta 2015, 161, 171–176.

[116]

Guo, Q. P.; Han, Y.; Wang, H.; Xiong, S. Z.; Sun, W. W.; Zheng, C. M.; Xie, K. Flame retardant and stable Li1.5Al0.5Ge1.5(PO4)3-supported ionic liquid gel polymer electrolytes for high safety rechargeable solid-state lithium metal batteries. J. Phys. Chem. C 2018, 122, 10334–10342.

[117]

Rathika, R.; Suthanthiraraj, S. A. Influence of 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide plasticization on zinc-ion conducting PEO/PVDF blend gel polymer electrolyte. J. Mater. Sci. Mater. Electron. 2018, 29, 19632–19643.

[118]

MacFarlane, D. R.; Forsyth, M. Plastic crystal electrolyte materials: New perspectives on solid state ionics. Adv. Mater. 2001, 13, 957–966.

[119]

Chen, F.; Zha, W. P.; Yang, D. J.; Cao, S. Y.; Shen, Q.; Zhang, L. M.; Sadoway, D. R. All-solid-state lithium battery fitted with polymer electrolyte enhanced by solid plasticizer and conductive ceramic filler. J. Electrochem. Soc. 2018, 165, A3558–A3565.

[120]

Fan, L. Z.; Wang, X. L.; Long, F.; Wang, X. Enhanced ionic conductivities in composite polymer electrolytes by using succinonitrile as a plasticizer. Solid State Ionics 2008, 179, 1772–1775.

[121]

Zha, W. P.; Li, J. Y.; Li, W. W.; Sun, C. Z.; Wen, Z. Y. Anchoring succinonitrile by solvent-Li+ associations for high-performance solid-state lithium battery. Chem. Eng. J. 2021, 406, 126754.

[122]

Liu, Y. L.; Zhao, Y.; Lu, W.; Sun, L. Q.; Lin, L.; Zheng, M.; Sun, X. L.; Xie, H. M. PEO based polymer in plastic crystal electrolytes for room temperature high-voltage lithium metal batteries. Nano Energy 2021, 88, 106205.

[123]

Choi, K. H.; Cho, S. J.; Kim, S. H.; Kwon, Y. H.; Kim, J. Y.; Lee, S. Y. Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv. Funct. Mater. 2014, 24, 44–52.

[124]

Wang, F. R.; Li, L. B.; Yang, X. Y.; You, J.; Xu, Y. P.; Wang, H.; Ma, Y.; Gao, G. X. Influence of additives in a PVDF-based solid polymer electrolyte on conductivity and Li-ion battery performance. Sustainable Energy Fuels 2018, 2, 492–498.

[125]

Das, S.; Ghosh, A. Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes. J. Phys. Chem. B 2017, 121, 5422–5432.

[126]

Jinisha, B.; Anilkumar, K. M.; Manoj, M.; Pradeep, V. S.; Jayalekshmi, S. Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide) (PEO)/poly (vinyl pyrrolidone) (PVP) blend polymer. Electrochim. Acta 2017, 235, 210–222.

[127]

Choudhary, S. Effects of amorphous silica nanoparticles and polymer blend compositions on the structural, thermal, and dielectric properties of PEO-PMMA blend based polymer nanocomposites. J. Polym. Res. 2018, 25, 116.

[128]

Dhatarwal, P.; Sengwa, R. J. Influence of solid polymer electrolyte preparation methods on the performance of (PEO-PMMA)-LiBF4 films for lithium-ion battery applications. Polym Bull. 2018, 75, 5645–5666.

[129]

Li, J. L.; Zhu, L.; Xu, J. N.; Jing, M. X.; Yao, S. S.; Shen, X. Q.; Li, S. J.; Tu, F. Y. Boosting the performance of poly(ethylene oxide)-based solid polymer electrolytes by blending with poly(vinylidene fluoride-co-hexafluoropropylene) for solid-state lithium-ion batteries. Int. J. Energy Res. 2020, 44, 7831–7840.

[130]

Liu, L. H.; Mo, J. S.; Li, J. R.; Liu, J. X.; Yan, H. J.; Lyu, J.; Jiang, B.; Chu, L. H.; Li, M. C. Comprehensively-modified polymer electrolyte membranes with multifunctional PMIA for highly-stable all-solid-state lithium-ion batteries. J. Energy Chem. 2020, 48, 334–343.

[131]

Wang, H.; Lin, C.; Yan, X. H.; Wu, A. M.; Shen, S. Y.; Wei, G. H.; Zhang, J. L. Mechanical property-reinforced PEO/PVDF/LiClO4/SN blend all solid polymer electrolyte for lithium ion batteries. J. Electroanal. Chem. 2020, 869, 114156.

[132]

Shenbagavalli, S.; Muthuvinayagam, M.; Revathy, M. S. Preparation and characterization of proton (H+) conducting solid blend polymer electrolytes based on PEO/P(VdF-HFP) incorporated with NH4SCN. J. Non-Cryst. Solids 2022, 579, 121368.

[133]

Lv, Z. L.; Tang, Y.; Dong, S. M.; Zhou, Q.; Cui, G. L. Polyurethane-based polymer electrolytes for lithium Batteries: Advances and perspectives. Chem. Eng. J 2022, 430, 132659.

[134]

Yu, X. Y.; Xiao, M.; Wang, S. J.; Zhao, Q. Q.; Meng, Y. Z. Fabrication and characterization of PEO/PPC polymer electrolyte for lithium-ion battery. J. Appl. Polym. Sci. 2010, 115, 2718–2722.

[135]

Zhang, J. J.; Zhao, J. H.; Yue, L. P.; Wang, Q. F.; Chai, J. C.; Liu, Z. H.; Zhou, X. H.; Li, H.; Guo, Y. G.; Cui, G. L. et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries. Adv. Energy Mater. 2015, 5, 1501082.

[136]

Nourisabet, T.; Aval, H. J.; Shidpour, R.; Naji, L. Fabrication of a PEO-PVDF blend based polymer composite electrolyte with extremely high ionic conductivity via the addition of LLTO nanowires. Solid State Ionics 2022, 377, 115885.

[137]

Mallaiah, Y.; Jeedi, V. R.; Swarnalatha, R.; Raju, A.; Reddy, S. N.; Chary, A. S. Impact of polymer blending on ionic conduction mechanism and dielectric properties of sodium based PEO-PVDF solid polymer electrolyte systems. J. Phys. Chem. Solids 2021, 155, 110096.

[138]

Rocco, A. M.; Pereira, R. P. Solid electrolytes based on poly(ethylene oxide)/poly(4-vinyl phenol-co-2-hydroxyethyl methacrylate) blends and LiClO4. Solid State Ionics 2015, 279, 78–89.

[139]

Li, Y. J.; Fan, C. Y.; Zhang, J. P.; Wu, X. L. A promising PMHS/PEO blend polymer electrolyte for all-solid-state lithium ion batteries. Dalton Trans. 2018, 47, 14932–14937.

[140]

Patla, S. K.; Ray, R.; Asokan, K.; Karmakar, S. Investigation of ionic conduction in PEO-PVDF based blend polymer electrolytes. J. Appl. Phys. 2018, 123, 125102.

[141]

Glynos, E.; Petropoulou, P.; Mygiakis, E.; Nega, A. D.; Pan, W. Y.; Papoutsakis, L.; Giannelis, E. P.; Sakellariou, G.; Anastasiadis, S. H. Leveraging molecular architecture to design new, all-polymer solid electrolytes with simultaneous enhancement in modulus and ionic conductivity. Macromolecules 2018, 51, 2542–2550.

[142]

B. Puthirath, A.; Patra, S.; Pal, S.; M, M.; Puthirath Balan, A.; S, J.; Tharangattu N, N. Transparent flexible lithium ion conducting solid polymer electrolyte. J. Mater. Chem. A 2017, 5, 11152–11162.

[143]

Bao, J. J.; Qu, X. B.; Qi, G. Q.; Huang, Q. K.; Wu, S. F.; Tao, C.; Gao, M. H.; Chen, C. H. Solid electrolyte based on waterborne polyurethane and poly(ethylene oxide) blend polymer for all-solid-state lithium ion batteries. Solid State Ionics 2018, 320, 55–63.

[144]

Liang, H. P.; Zarrabeitia, M.; Chen, Z.; Jovanovic, S.; Merz, S.; Granwehr, J.; Passerini, S.; Bresser, D. Polysiloxane-based single-ion conducting polymer blend electrolyte comprising small-molecule organic carbonates for high-energy and high-power lithium-metal batteries. Adv. Energy Mater. 2022, 12, 2200013.

[145]

Zhao, Y. B.; Bai, Y.; Bai, Y. P.; An, M. Z.; Chen, G. R.; Li, W. D.; Li, C.; Zhou, Y. F. A rational design of solid polymer electrolyte with high salt concentration for lithium battery. J. Power Sources 2018, 407, 23–30.

[146]

Li, Z. G.; Mogensen, R.; Mindemark, J.; Bowden, T.; Brandell, D.; Tominaga, Y. Ion-conductive and thermal properties of a synergistic poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte. Macromol. Rapid Commun. 2018, 39, 1800146.

[147]

Vignarooban, K.; Dissanayake, M. A. K. L.; Albinsson, I.; Mellander, B. E. Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly(ethylene oxide) (PEO) based solid polymer electrolytes. Solid State Ionics 2014, 266, 25–28.

[148]

Masoud, E. M.; El-Bellihi, A. A.; Bayoumy, W. A.; Mousa, M. A. Organic–inorganic composite polymer electrolyte based on PEO-LiClO4 and nano-Al2O3 filler for lithium polymer batteries: Dielectric and transport properties. J. Alloys Compd. 2013, 575, 223–228.

[149]

Li, W. W.; Zhang, S. P.; Wang, B. R.; Gu, S.; Xu, D.; Wang, J. N.; Chen, C. H.; Wen, Z. Y. Nanoporous adsorption effect on alteration of the Li+ diffusion pathway by a highly ordered porous electrolyte additive for high-rate all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 23874–23882.

[150]

Wu, N.; Chien, P. H.; Qian, Y. M.; Li, Y. T.; Xu, H. H.; Grundish, N. S.; Xu, B. Y.; Jin, H. B.; Hu, Y. Y.; Yu, G. H. et al. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew. Chem., Int. Ed. 2020, 59, 4131–4137.

[151]

Liang, Y.; Liu, Y.; Chen, D.; Dong, L.; Guang, Z.; Liu, J.; Yuan, B.; Yang, M.; Dong, Y.; Li, Q. et al. Hydroxyapatite functionalization of solid polymer electrolytes for high-conductivity solid-state lithium-ion batteries. Mater. Today Energy 2021, 20, 100694.

[152]

Ma, C.; Dai, K.; Hou, H. S.; Ji, X. B.; Chen, L. B.; Ivey, D. G.; Wei, W. F. High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers. Adv. Sci. 2018, 5, 1700996.

[153]

Liu, R. P.; He, P.; Wu, Z. R.; Guo, F.; Huang, B.; Wang, Q.; Huang, Z. Y.; Wang, C. -A.; Li, Y. T., PEO/hollow mesoporous polymer spheres composites as electrolyte for all solid state lithium ion battery. J. Electroanal. Chem. 2018, 822, 105–111.

[154]

Wang, S.; Liu, X.; Wang, A. L.; Wang, Z. N.; Chen, J.; Zeng, Q. H.; Jiang, X. R.; Zhou, H. H.; Zhang, L. Y., High-performance all-solid-state polymer electrolyte with controllable conductivity pathway formed by self-assembly of reactive discogen and immobilized via a facile photopolymerization for a lithium-ion battery. ACS Appl. Mater. Interfaces 2018, 10, 25273–25284.

[155]

Fu, X. W.; Li, C. H.; Wang, Y.; Kovatch, L. P.; Scudiero, L.; Liu, J.; Zhong, W. H. Building ion-conduction highways in polymeric electrolytes by manipulating protein configuration. ACS Appl. Mater. Interfaces 2018, 10, 4726–4736.

[156]

Zhu, K.; Liu, Y. X.; Liu, J. A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte. RSC Adv. 2014, 4, 42278–42284.

[157]

Wu, J. F.; Guo, X. MOF-derived nanoporous multifunctional fillers enhancing the performances of polymer electrolytes for solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 2653–2659.

[158]

Gutiérrez-Pardo, A.; Pitillas Martinez, A. I.; Otaegui, L.; Schneider, M.; Roters, A.; Llordés, A.; Aguesse, F.; Buannic, L. Will the competitive future of solid state Li metal batteries rely on a ceramic or a composite electrolyte? Sustainable Energy Fuels 2018, 2, 2325–2334.

[159]

Zhao, Y. R.; Huang, Z.; Chen, S. J.; Chen, B.; Yang, J.; Zhang, Q.; Ding, F.; Chen, Y. H.; Xu, X. X. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics 2016, 295, 65–71.

[160]

Chen, S. J.; Wang, J. Y.; Zhang, Z. H.; Wu, L. B.; Yao, L. L.; Wei, Z. Y.; Deng, Y. H.; Xie, D. J.; Yao, X. Y.; Xu, X. X. In situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. J. Power Sources 2018, 387, 72–80.

[161]

Cao, J.; Wang, L.; He, X. M.; Fang, M.; Gao, J.; Li, J. J.; Deng, L. F.; Chen, H.; Tian, G. Y.; Wang, J. L. et al. In situ prepared nano-crystalline TiO2-poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries. J. Mater. Chem. A 2013, 1, 5955–5961.

[162]

Fu, K.; Gong, Y. H.; Dai, J. Q.; Gong, A.; Han, X. G.; Yao, Y. G.; Wang, C. W.; Wang, Y. B.; Chen, Y. N.; Yan, C. Y. et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc. Natl. Acad. Sci. USA 2016, 113, 7094–7099.

[163]

Zheng, J.; Tang, M. X.; Hu, Y. Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem., Int. Ed. 2016, 55, 12538–12542.

[164]

Zheng, J.; Hu, Y. Y. New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 4113–4120.

[165]

Zhang, J. J.; Zang, X.; Wen, H. J.; Dong, T. T.; Chai, J. C.; Li, Y.; Chen, B. B.; Zhao, J. W.; Dong, S. M.; Ma, J. et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 2017, 5, 4940–4948.

[166]

Zhai, H. W.; Xu, P. Y.; Ning, M. Q.; Cheng, Q.; Mandal, J.; Yang, Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett. 2017, 17, 3182–3187.

[167]

Liu, X. Q.; Peng, S.; Gao, S. Y.; Cao, Y. C.; You, Q. L.; Zhou, L. Y.; Jin, Y. C.; Liu, Z. H.; Liu, J. Y. Electric-field-directed parallel alignment architecting 3D lithium-ion pathways within solid composite electrolyte. ACS Appl. Mater. Interfaces 2018, 10, 15691–15696.

[168]

Lin, D. C.; Liu, W.; Liu, Y. Y.; Lee, H. R.; Hsu, P. C.; Liu, K.; Cui, Y. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2016, 16, 459–465.

[169]

Huang, Z. Y.; Pang, W. Y.; Liang, P.; Jin, Z. H.; Grundish, N.; Li, Y. T.; Wang, C. A. A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: Enhanced thermal and electrochemical properties. J. Mater. Chem. A 2019, 7, 16425–16436.

[170]

Zhang, P.; Yang, L. C.; Li, L. L.; Ding, M. L.; Wu, Y. P.; Holze, R. Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires. J. Membrane Sci. 2011, 379, 80–85.

[171]

Liu, W.; Liu, N.; Sun, J.; Hsu, P. C.; Li, Y. Z.; Lee, H. W.; Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015, 15, 2740–2745.

[172]

Sheng, O. W.; Jin, C. B.; Luo, J. M.; Yuan, H. D.; Huang, H.; Gan, Y. P.; Zhang, J.; Xia, Y.; Liang, C.; Zhang, W. K. et al. Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett. 2018, 18, 3104–3112.

[173]

Liu, W.; Lin, D. C.; Sun, J.; Zhou, G. M.; Cui, Y. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 2016, 10, 11407–11413.

[174]

Pignanelli, F.; Romero, M.; Faccio, R.; Fernández-Werner, L.; Mombrú, A. W. Enhancement of lithium-ion transport in poly(acrylonitrile) with hydrogen titanate nanotube fillers as solid polymer electrolytes for lithium-ion battery applications. J. Phys. Chem. C 2018, 122, 1492–1499.

[175]

Guo, X. Q.; Peng, W. J.; Wu, Y. Q.; Guo, H. J.; Wang, Z. X.; Li, X. H.; Ke, Y.; Wu, L. J.; Fu, H. K.; Wang, J. X. Al4B2O9 nanorods-modified solid polymer electrolytes with decent integrated performance. Sci. China Mater. 2021, 64, 296–306.

[176]

Gomari, S.; Esfandeh, M.; Ghasemi, I. All-solid-state flexible nanocomposite polymer electrolytes based on poly(ethylene oxide): Lithium perchlorate using functionalized graphene. Solid State Ionics 2017, 303, 37–46.

[177]

Yuan, M. Y.; Erdman, J.; Tang, C. Y.; Ardebili, H. High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Adv. 2014, 4, 59637–59642.

[178]

Shim, J.; Kim, D. G.; Kim, H. J.; Lee, J. H.; Baik, J. H.; Lee, J. C. Novel composite polymer electrolytes containing poly(ethylene glycol)-grafted graphene oxide for all-solid-state lithium-ion battery applications. J. Mater. Chem. A 2014, 2, 13873–13883.

[179]

Ye, Y. S.; Wang, H.; Bi, S. G.; Xue, Y.; Xue, Z. G.; Zhou, X. P.; Xie, X. L.; Mai, Y. W. High performance composite polymer electrolytes using polymeric ionic liquid-functionalized graphene molecular brushes. J. Mater. Chem. A 2015, 3, 18064–18073.

[180]

Sun, Z. J.; Li, Y. H.; Zhang, S. Y.; Shi, L.; Wu, H.; Bu, H. T.; Ding, S. J. g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J. Mater. Chem. A 2019, 7, 11069–11076.

[181]

An, H. W.; Liu, Q. S.; An, J. L.; Liang, S. T.; Wang, X. F.; Xu, Z. W.; Tong, Y. J.; Huo, H.; Sun, N.; Wang, Y. L. et al. Coupling two-dimensional fillers with polymer chains in solid polymer electrolyte for room-temperature dendrite-free lithium-metal batteries. Energy Storage Mater. 2021, 43, 358–364.

[182]

Pan, Q. W.; Zheng, Y. W.; Kota, S.; Huang, W. C.; Wang, S. J.; Qi, H.; Kim, S.; Tu, Y. F.; Barsoum, M. W.; Li, C. Y. 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv. 2019, 1, 395–402.

[183]

Chen, L.; Li, W. X.; Fan, L. Z.; Nan, C. W.; Zhang, Q. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv. Funct. Mater. 2019, 29, 1901047.

[184]

Wang, Q.; Wu, J. F.; Yu, Z. Y.; Guo, X. Composite polymer electrolytes reinforced by two-dimensional layer-double-hydroxide nanosheets for dendrite-free lithium batteries. Solid State Ionics 2020, 347, 115275.

[185]

Xia, S. X.; Yang, B. B.; Zhang, H. B.; Yang, J. H.; Liu, W.; Zheng, S. Y. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature. Adv. Funct. Mater. 2021, 31, 2101168.

[186]

Sun, Y. Y.; Jin, F.; Li, J.; Liu, B. T.; Chen, X.; Dong, H. C.; Mao, Y. Y.; Gu, W.; Xu, J. J.; Shen, Y. B. et al. Composite solid electrolyte for solid-state lithium batteries workable at room temperature. ACS Appl. Energy Mater. 2020, 3, 12127–12133.

[187]

Li, D.; Chen, L.; Wang, T. S.; Fan, L. Z. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 7069–7078.

[188]

Bae, J.; Li, Y. T.; Zhang, J.; Zhou, X. Y.; Zhao, F.; Shi, Y.; Goodenough, J. B.; Yu, G. H. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem., Int. Ed. 2018, 57, 2096–2100.

[189]

Zekoll, S.; Marriner-Edwards, C.; Hekselman, A. K. O.; Kasemchainan, J.; Kuss, C.; Armstrong, D. E. J.; Cai, D. Y.; Wallace, R. J.; Richter, F. H.; Thijssen, J. H. J. et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ. Sci. 2018, 11, 185–201.

[190]

Gong, Y. H.; Fu, K.; Xu, S. M.; Dai, J. Q.; Hamann, T. R.; Zhang, L.; Hitz, G. T.; Fu, Z. Z.; Ma, Z. H.; McOwen, D. W. et al. D. Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries. Mater. Today 2018, 21, 594–601.

[191]

Li, Z.; Sha, W. X.; Guo, X. Three-dimensional garnet framework-reinforced solid composite electrolytes with high lithium-ion conductivity and excellent stability. ACS Appl. Mater. Interfaces 2019, 11, 26920–26927.

[192]

Jin, Y. M.; Zong, X.; Zhang, X. B.; Liu, C. J.; Li, D.; Jia, Z. G.; Li, G.; Zhou, X. G.; Wei, J. H.; Xiong, Y. P. Interface regulation enabling three-dimensional Li1.3Al0.3Ti1.7(PO4)3-reinforced composite solid electrolyte for high-performance lithium batteries. J. Power Sources 2021, 501, 230027.

[193]

Gao, L.; Li, J. X.; Ju, J. G.; Wang, L. Y.; Yan, J.; Cheng, B. W.; Kang, W. M.; Deng, N. P.; Li, Y. T. Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries. Chem. Eng. J. 2020, 389, 124478.

[194]

Gao, L.; Sarmad, B.; Li, J. X.; Cheng, B. W.; Kang, W. M.; Deng, N. P. Application of polyamide 6 microfiber non-woven fabrics in the large-scale production of all-solid-state lithium metal batteries. J. Power Sources 2020, 475, 228663.

[195]

Qin, H. F.; Fu, K.; Zhang, Y.; Ye, Y. H.; Song, M. Y.; Kuang, Y. D.; Jang, S. H.; Jiang, F.; Cui, L. F. Flexible nanocellulose enhanced Li+ conducting membrane for solid polymer electrolyte. Energy Storage Mater. 2020, 28, 293–299.

[196]

Liu, L. H.; Lyu, J.; Mo, J. S.; Peng, P.; Li, J. R.; Jiang, B.; Chu, L. H.; Li, M. C. Flexible, high-voltage, ion-conducting composite membranes with 3D aramid nanofiber frameworks for stable all-solid-state lithium metal batteries. Sci. China Mater. 2020, 63, 703–718.

[197]

Watanabe, T.; Inafune, Y.; Tanaka, M.; Mochizuki, Y.; Matsumoto, F.; Kawakami, H. Development of all-solid-state battery based on lithium ion conductive polymer nanofiber framework. J. Power Sources 2019, 423, 255–262.

[198]

Yang, X. F.; Sun, Q.; Zhao, C. T.; Gao, X. J.; Adair, K. R.; Liu, Y. L.; Luo, J.; Lin, X. T.; Liang, J. N.; Huang, H. et al. High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes. Nano Energy 2019, 61, 567–575.

[199]

Pal, P.; Ghosh, A. Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim. Acta 2018, 260, 157–167.

[200]

Wang, Q. J.; Song, W. L.; Fan, L. Z.; Song, Y. Flexible, high-voltage, and free-standing composite polymer electrolyte membrane based on triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for lithium-ion batteries. J. Membrane Sci. 2015, 492, 490–496.

[201]

Li, Z.; Huang, H. M.; Zhu, J. K.; Wu, J. F.; Yang, H.; Wei, L.; Guo, X. Ionic conduction in composite polymer electrolytes: Case of PEO:Ga-LLZO composites. ACS Appl. Mater. Interfaces 2019, 11, 784–791.

[202]

Karthik, K.; Murugan, R. Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. J. Solid State Electr. 2018, 22, 2989–2998.

[203]

Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.

[204]

Cheng, S. H. S.; He, K. Q.; Liu, Y.; Zha, J. W.; Kamruzzaman, M.; Ma, R. L. W.; Dang, Z. M.; Li, R. K. Y.; Chung, C. Y. Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochim. Acta 2017, 253, 430–438.

[205]

Zhao, Y. R.; Wu, C.; Peng, G.; Chen, X. T.; Yao, X. Y.; Bai, Y.; Wu, F.; Chen, S. J.; Xu, X. X. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources 2016, 301, 47–53.

[206]

Xu, X. Y.; Hou, G. M.; Nie, X. K.; Ai, Q.; Liu, Y.; Feng, J. K.; Zhang, L.; Si, P. C.; Guo, S. R.; Ci, L. J. Li7P3S11/poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries. J. Power Sources 2018, 400, 212–217.

[207]

Bao, W. D.; Zhao, L. Q.; Zhao, H. J.; Su, L. X.; Cai, X. C.; Yi, B. L.; Zhang, Y.; Xie, J. Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries. Energy Storage Mater. 2021, 43, 258–265.

[208]

Sasikumar, M.; Raja, M.; Krishna, R. H.; Jagadeesan, A.; Sivakumar, P.; Rajendran, S. Influence of hydrothermally synthesized cubic-structured BaTiO3 ceramic fillers on ionic conductivity, mechanical integrity, and thermal behavior of P(VDF-HFP)/PVAc-based composite solid polymer electrolytes for lithium-ion batteries. J. Phys. Chem. C 2018, 122, 25741–25752.

[209]

Zhu, P.; Yan, C. Y.; Dirican, M.; Zhu, J. D.; Zang, J.; Selvan, R. K.; Chung, C. C.; Jia, H.; Li, Y.; Kiyak, Y. et al. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J. Mater. Chem. A 2018, 6, 4279–4285.

[210]

Fan, R.; Liu, C.; He, K. Q.; Cheng, S. H. S.; Chen, D. Z.; Liao, C. Z.; Li, R. K. Y.; Tang, J. N.; Lu, Z. G. Versatile strategy for realizing flexible room-temperature all-solid-state battery through a synergistic combination of salt affluent PEO and Li6.75La3Zr1.75Ta0.25O12 nanofibers. ACS Appl. Mater. Interfaces 2020, 12, 7222–7231.

[211]

Gao, L.; Luo, S. B.; Li, J. X.; Cheng, B. W.; Kang, W. M.; Deng, N. P. Core–shell structure nanofibers-ceramic nanowires based composite electrolytes with high Li transference number for high-performance all-solid-state lithium metal batteries. Energy Storage Mater. 2021, 43, 266–274.

[212]

Zhang, Z.; Huang, Y.; Gao, H.; Li, C.; Huang, J. X.; Liu, P. B. 3D glass fiber cloth reinforced polymer electrolyte for solid-state lithium metal batteries. J. Membrane Sci. 2021, 621, 118940.

[213]

Chen, L.; Li, Y. T.; Li, S. P.; Fan, L. Z.; Nan, C. W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic". Nano Energy 2018, 46, 176–184.

[214]

Wang, Y. T.; Ju, J. W.; Dong, S. M.; Yan, Y. Y.; Jiang, F.; Cui, L. F.; Wang, Q. L.; Han, X. Q.; Cui, G. L. Facile design of sulfide-based all solid-state lithium metal battery: In situ polymerization within self-supported porous argyrodite skeleton. Adv. Funct. Mater. 2021, 31, 2101523.

[215]

Wang, T. R.; Zhang, R. Q.; Wu, Y. M.; Zhu, G. N.; Hu, C. C.; Wen, J. Y.; Luo, W. Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries. J. Energy Chem. 2020, 46, 187–190.

[216]

Lim, Y. S.; Jung, H. A.; Hwang, H. Fabrication of PEO-PMMA-LiClO4-based solid polymer electrolytes containing silica aerogel particles for all-solid-state lithium batteries. Energies 2018, 11, 2559.

[217]

Xu, Y. J.; Gao, L. N.; Wu, X. Z.; Zhang, S. Z.; Wang, X. L.; Gu, C. D.; Xia, X. H.; Kong, X. Q.; Tu, J. P. Porous composite gel polymer electrolyte with interfacial transport pathways for flexible quasi solid lithium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 23743–23750.

[218]

Tsai, C. Y.; Peng, K. J.; Wang, C. F.; Liu, Y. L. Creation of lithium-ion-conducting channels in gel polymer electrolytes through non-solvent-induced phase separation for high-rate lithium-ion batteries. ACS Sustainable Chem. Eng. 2020, 8, 2138–2146.

[219]

Tsai, C. Y.; Liu, Y. L. Building up ion-conduction pathways in solid polymer electrolytes through surface and pore functionalization of PVDF porous membranes with ionic conductors. J. Membrane Sci. 2022, 651, 120456.

[220]

Zhang, S. S.; Xu, K.; Jow, T. R. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim. Acta 2006, 51, 1636–1640.

[221]

Chung, N. K.; Kwon, Y. D.; Kim, D. Thermal, mechanical, swelling, and electrochemical properties of poly(vinylidene fluoride)-co-hexafluoropropylene/poly(ethylene glycol) hybrid-type polymer electrolytes. J. Power Sources 2003, 124, 148–154.

[222]

Du Pasquier, A.; Zheng, T.; Amatucci, G. G.; Gozdz, A. S. Microstructure effects in plasticized electrodes based on PVDF-HFP for plastic Li-ion batteries. J. Power Sources 2001, 97–98, 758–761.

[223]

Du Pasquier, A.; Warren, P. C.; Culver, D.; Gozdz, A. S.; Tarascon, J. M. Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process. Solid State Ionics 2000, 135, 249–257.

[224]

Ren, Z.; Liu, Y. Y.; Sun, K. N.; Zhou, X. L.; Zhang, N. Q. A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery. Electrochim. Acta 2009, 54, 1888–1892.

[225]

Zhou, B. H.; Zhou, Y.; Lai, L. J.; Chen, Z. L.; Li, J. J.; Jiang, Y. L.; Liu, J.; Wang, Z. P.; Xue, Z. G. Fabrication of borate-based porous polymer electrolytes containing cyclic carbonate for high-performance lithium metal batteries. ACS Appl. Energy Mater. 2021, 4, 9582–9593.

[226]

Feng, J. W.; Ao, X. H.; Lei, Z. W.; Wang, J.; Deng, Y. H.; Wang, C. Y. Hollow nanotubular clay composited comb-like methoxy poly(ethylene glycol) acrylate polymer as solid polymer electrolyte for lithium metal batteries. Electrochim. Acta 2020, 340, 135995.

[227]

Liang, B.; Jiang, Q. B.; Tang, S. Q.; Li, S. L.; Chen, X. Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries. J. Power Sources 2016, 307, 320–328.

[228]

Wu, J. Y.; Yuan, L. X.; Zhang, W. X.; Li, Z.; Xie, X. L.; Huang, Y. H. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy Environ. Sci. 2021, 14, 12–36.

[229]

Zhou, M. H.; Liu, R. L.; Jia, D. Y.; Cui, Y.; Liu, Q. T.; Liu, S. H.; Wu, D. C. Ultrathin yet robust single lithium-ion conducting quasi-solid-state polymer-brush electrolytes enable ultralong-life and dendrite-free lithium-metal batteries. Adv. Mater. 2021, 33, 2100943.

[230]

Yang, X. F.; Adair, K. R.; Gao, X. J.; Sun, X. L. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ. Sci. 2021, 14, 643–671.

[231]

Gao, J.; Shao, Q. J.; Chen, J. Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery. J. Energy Chem. 2020, 46, 237–247.

[232]

He, F.; Tang, W. J.; Zhang, X. Y.; Deng, L. J.; Luo, J. Y. High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 2021, 33, 2105329.

[233]

Wan, J. Y.; Xie, J.; Kong, X.; Liu, Z.; Liu, K.; Shi, F. F.; Pei, A.; Chen, H.; Chen, W.; Chen, J. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 2019, 14, 705–711.

[234]

Jiang, Z. Y.; Wang, S. Q.; Chen, X. Z.; Yang, W. L.; Yao, X.; Hu, X. C.; Han, Q. Y.; Wang, H. H. Tape-casting Li0.34La0.56TiO3 ceramic electrolyte films permit high energy density of lithium-metal batteries. Adv. Mater. 2020, 32, 1906221.

[235]

Balaish, M.; Gonzalez-Rosillo, J. C.; Kim, K. J.; Zhu, Y. T.; Hood, Z. D.; Rupp, J. L. M. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy 2021, 6, 227–239.

[236]

Ling, Q.; Yu, Z. Z.; Xu, H. R.; Zhu, G. S.; Zhang, X. Y.; Zhao, Y. Y.; Yu, A. B. Preparation and electrical properties of amorphous Li-Al-Ti-P-O thin film electrolyte. Mater. Lett. 2016, 169, 42–45.

[237]

Nong, J.; Xu, H. R.; Yu, Z. Z.; Zhu, G. S.; Yu, A. B. Properties and preparation of Li-La-Ti-Zr-O thin film electrolyte. Mater. Lett. 2015, 154, 167–169.

[238]

Whiteley, J. M.; Taynton, P.; Zhang, W.; Lee, S. H. Ultra-thin solid-state Li-ion electrolyte membrane facilitated by a self-healing polymer matrix. Adv. Mater. 2015, 27, 6922–6927.

[239]

Zhang, M.; Huang, Z.; Cheng, J. F.; Yamamoto, O.; Imanishi, N.; Chi, B.; Pu, J.; Li, J. Solid state lithium ionic conducting thin film Li1.4Al0.4Ge1.6(PO4)3 prepared by tape casting. J. Alloys Compd. 2014, 590, 147–152.

[240]

Nam, Y. J.; Cho, S. J.; Oh, D. Y.; Lim, J. M.; Kim, S. Y.; Song, J. H.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett. 2015, 15, 3317–3323.

[241]

Liu, G. Z.; Shi, J. M.; Zhu, M. T.; Weng, W.; Shen, L.; Yang, J.; Yao, X. Y. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries. Energy Storage Mater. 2021, 38, 249–254.

[242]

Wang, Z. Y.; Shen, L.; Deng, S. G.; Cui, P.; Yao, X. Y. 10 μm-thick high-strength solid polymer electrolytes with excellent interface compatibility for flexible all-solid-state lithium-metal batteries. Adv. Mater. 2021, 33, 2100353.

[243]

Wu, J. Y.; Rao, Z. X.; Cheng, Z. X.; Yuan, L. X.; Li, Z.; Huang, Y. H. Ultrathin, flexible polymer electrolyte for cost-effective fabrication of all-solid-state lithium metal batteries. Adv. Energy Mater. 2019, 9, 1902767.

[244]

Chen, W. P.; Duan, H.; Shi, J. L.; Qian, Y. M.; Wan, J.; Zhang, X. D.; Sheng, H.; Guan, B.; Wen, R.; Yin, Y. X. et al. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte. J. Am. Chem. Soc. 2021, 143, 5717–5726.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 September 2022
Revised: 05 December 2022
Accepted: 17 December 2022
Published: 23 February 2023
Issue date: June 2023

Copyright

© The Author(s) 2023. Published by Tsinghua University Press.

Acknowledgements

Acknowledgements

This work was supported partially by project of the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Nos. LAPS21004 and LAPS202114), the Hebei Natural Science Foundation (No. E2022502022), the National Natural Science Foundation of China (Nos. 52272200, 51972110, 52102245, and 52072121), the Beijing Science and Technology Project (No. Z211100004621010), the Beijing Natural Science Foundation (Nos. 2222076 and 2222077), the Huaneng Group Headquarters Science and Technology Project (No. HNKJ20-H88), the 2022 Strategic Research Key Project of Science and Technology Commission of the Ministry of Education, the China Postdoctoral Science Foundation (No. 2022M721129), the Fundamental Research Funds for the Central Universities (Nos. 2022MS030, 2021MS028, 2020MS023, and 2020MS028), and the NCEPU "Double First-Class" Program.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return