Impact of salinity on the kinetics of CO2 fixation by Spirulina platensis cultivated in semi-continuous photobioreactors

Main Article Content

Javier Christian Ramirez-Perez
Harry Janes

Abstract

In this research, the physiological response of the microalgae Spirulina platensis to salinity stress (1 and 100 g L-1 ) was investigated. Spirulina platensis and Spirulina platensis (adapted to high salt concentration) were operated at laboratory scale in a semi-continuous photobioreactors. The responses examined were within 0.5 to 10% CO2 concentration, temperatures from 10 to 40 oC, light intensities from 60 to 200 μmol m-2 s -1 and presented better results in terms of all kinetic parameters. The highest rate of CO2 biofixation for Spirulina platensis was 25.1 gCO2 m-3 h -1 , and the maximum specific growth (μmax) achieved was 0.44 d-1 - 0.67 d-1 at 2.5% CO2, 150 µmol m-2 s -1 at 25 oC. Corresponding determined values of Spirulina platensis adapted were 18.2 gCO2 m-3 h -1 , 0.31 d-1 - 0.58 d-1 at 2.5% CO2, 60 µmol s-1 m-2 and 28 oC. However, both microalgae exhibited experimental limiting growth factors, CO2 10%, 40 oC and 200 µmol m-2 s -1 , conditions under which photosynthetic CO2 biofixation may be inhibited and photoinhibition of photosynthesis may be enhanced by salinity. The efficiency of 2.5% CO2 removal by Spirulina platensis achieved 99%, whereas Spirulina platensis adapted to 96%, respectively. The kinetic parameters estimated for Spirulina platensis can be used to improve photobioreactor design for reducing of atmospheric carbon dioxide.

Metrics

Metrics Loading ...

Article Details

How to Cite
Ramirez-Perez, J. C., & Janes, H. (2021). Impact of salinity on the kinetics of CO2 fixation by Spirulina platensis cultivated in semi-continuous photobioreactors. Eclética Química, 46(1), 21–34. https://doi.org/10.26850/1678-4618eqj.v46.1.2021.p21-34
Section
Original articles

References

National Oceanic and Atmospheric Administration, Trends in Atimospheric Carbon Dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html.

Department of Energy, Carbon Capture R&D, Office of Fossil Energy, Washington. https://www.energy.gov/fe/science-innovation/carbon-capture-and-storage-research/carbon-capture-rd.

Intergovernmental Panel on Climate Change. Climate Change 2007: Mitigation of Climate Change. Cambridge University Press, Cambridge, 2007. https://doi.org/10.1017/CBO9780511546013.

Ramirez-Perez J. C., Algal Photobioreactor an Air emission Cleanup and Renewable Energy Technology Demonstration, Final Technical Report EPA Region 2 (2006) 71.

Ramirez-Perez, J. C., Janes H. W., Carbon dioxide sequestration by Spirulina plantensis in photo-bioreactors, Habitation 12 (1) (2009) 65-77. https://doi.org/10.3727/154296610X12686999887328.

Ramirez-Perez, J. C., Hogan, J. A., Strom, P. F., Inedible Biomass Biodegradation for Advanced Life Support Systems: II. Compost Quality and Resource Recovery, Habitation 11 (4) (2008) 163-172. https://doi.org/10.3727/154296608785908615.

Ciferri, O., Spirulina, the edible microorganism, Microbiological and Molecular Biology Reviews 47 (4) (1983) 551-578. https://doi.org/10.1128/MMBR.47.4.551-578.1983.

Becker, E. W., Microalgae Biotechnology and Microbiology, Cambridge University Press, Cambridge, (1994).

Ravelonandro, P. H., Ratianarivo, D. H., Joannis-Cassan, C., Isambertc, A., Raherimandimby, M., Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity, and CO2 addition, Food and Bioproducts Processing 89 (3) (2011) 209-216. https://doi.org/10.1016/j.fbp.2010.04.009.

Zeng, M.-T., Vonshak A., Adaptation of Spirulina platensis to salinity-stress, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 120 (1) (1998) 113-118. https://doi.org/10.1016/S1095-6433(98)10018-1.

Maeda, K., Owada, M., Kimura, N., Omata, K., Karube, I. 1995. CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Conversion and Management 36 (6-9) (1995) 717-720. https://doi.org/10.1016/0196-8904(95)00105-M.

Matsumoto, H., Hamasaki, A., Sioji, N., Ikuta, Y., Influence of CO2, SO2 and NO in Flue Gas on Microalgae Productivity, Journal of Chemical Engineering of Japan 30 (4) (1997) 620-624. https://doi.org/10.1252/jcej.30.620.

Zhao, B., Zhang, Y., Xiong, K., Zhang, Z., Hao, X., Liu, T., Effect of cultivation mode on microalgal growth and CO2 fixation, Chemical Engineering Research and Design 89 (9) (2011) 1758-1762. https://doi.org/10.1016/j.cherd.2011.02.018.

Morais, M. G., Costa J. A. V., Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor, Journal of Biotechnology 129 (3) (2007) 439-445. https://doi.org/10.1016/j.jbiotec.2007.01.009.

Mayo, A. W., Effect of temperature and pH on the kinetic growth of unialgal Chlorella Vulgaris cultures containing bacteria, Water Environment Research 69 (1) (1997) 64-72. https://doi.org/10.2175/106143097X125191.

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 2012. http://www.R-project.org/.

Cheng, L., Zhang, L., Chen, H., Gao, C., Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor, Separation and Purification Technology 50 (3) (2006) 324-329. https://doi.org/10.1016/j.seppur.2005.12.006.

Yun, Y.-S., Lee, S. B., Park, J. M., Lee, C.-I., Yang, J.-W., Carbon Dioxide Fixation by Algal Cultivation Using Wastewater Nutrients, Journal of Chemical Technology and Biotechnology 69 (4) (1997) 451-455. https://doi.org/10.1002/(SICI)1097-4660(199708)69:4%3C451::AID-JCTB733%3E3.0.CO;2-M.

Yang, Y., Gao, K., Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoisa and Scenedesmus obliquus (Clorophyta), Journal of Applied Phycology 15 (5) (2003) 379-389. https://doi.org/10.1023/A:1026021021774.

Benemann, J. R., CO2 mitigation with microalgae systems, Energy Conversion and Management 38 (Suppl) (1997) S475-S479. https://doi.org/10.1016/S0196-8904(96)00313-5.