Computational Linguistics and Intellectual Technologies:
Proceedings of the International Conference “Dialogue 2020”

Moscow, June 17-20, 2020

Evseev D. A. (dmitrij.euseew@yandex.ru),
Arkhipov M. Yu. (arkhipov@yahoo.com)

Neural Networks and Deep Learning Lab, Moscow Institute
of Physics and Technology, Moscow, Russia

In this paper we describe question answering system for answering of com-
plex questions over Wikidata knowledge base. Unlike simple questions,
which require extraction of single fact from the knowledge base, complex
questions are based on more than one triplet and need logical or compara-
tive reasoning. The proposed question answering system translates a natu-
ral language question into a query in SPARQL language, execution of which
gives an answer. The system includes the models which define the SPARQL
query template corresponding to the question and then fill the slots in the
template with entities, relations and numerical values. For entity detection
we use BERT-based sequence labelling model. Ranking of candidate rela-
tions is performed in two steps with BiLSTM and BERT-based models. The
proposed models are the first solution for LC-QUAD2.0 dataset. The sys-
tem is capable of answering complex questions which involve comparative
or boolean reasoning.

Key words: knowledge base, complex question answering, query genera-
tion, entity detection, relation prediction

DOI: 10.28995/2075-7182-2020-19-270-282

Evseev D. A., Arkhipov M. Yu

EBceeB [. A. (dmitrij.euseew@yandex.ru),
Apxunos M. 10. (arkhipov@yahoo.com)

JTabopaTtopust HEMPOHHBLIX CUCTEM W FNYOOKOro 0Oy4eHNs,
MOCKOBCKNN GUSUKO-TEXHNYECKNM MHCTUTYT (HAUMOHAbHbIN
ncecnenoBaTensCkuii yHnesepceuteT), Mockea, Poccua

B naHHOM paboTe onucbiBaeTcs BONPOCHO-0TBETHAA CUCTEMA A1 OTBETa
Ha CNoXHble BONpockl No 6a3e 3HaHui Wikidata. B oTnnume o1 npocTbix BO-
NpPOCOB, A5 OTBETa Ha KoTopble TpebyeTca HanTK oanH dakT B 6a3e 3Ha-
HUWIA, CNOXHbIE BONPOCHI TPEOYIOT n3BneveHns 6onee 1 Tpynnera, a Takxe
NIOTMYECKUE UM CPaBHUTENbHbIE paccyxaeHus. [NpennoxeHHas cuctema
nepeBoauT BOMNPOC HA eCTECTBEHHOM fA3blke B 3arnpoc Ha s3blke SPARQL,
BbIMOJIHEHME KOTOPOro faeT OTBeT. B cocTaB cucTemMbl BXOOAT MOLENU,
KoTopble onpeaenstoT wabnoH SPARQL-3anpoca, COOTBETCTBYIOLLLENO BO-
npocy, 1 3aTeM 3anosHAT NyCcTble MecTa B WabfioHe CYLLHOCTAMM, OT-
HOLUIEHUSIMU U YUCNEHHbIMU 3HaYeHuaMU. [na M3BneyYeHus CyLLHOCTel
Mbl UCMOJIb30BaIM MOAESb MapPKMPOBKU MOCNEef0BaTENbHOCTEN HA OCHOBE
BERT. PaHxunpoBaHMe BOSMOXHbIX OTHOLLEHUI ANs BOnpoca NpoucxoauTt
B [1Ba 3Tana c NoMoLLlbio Mmoaeneit Ha ocHose BiLSTM n BERT. MNpennoxeH-
Hble Mogenn — nepsoe pelleHne ang pataceta LC-QUAD2.0. Cuctema
cnocobHa oTBeYaTb Ha BOMPOCHI, TPEOyIOLNEe CPaBHUTENBHOE NN NIOMU-
Yeckoe paccyxaeHue.

KnioueBbie cnoBa: 6a3a 3HaHWM, OTBET Ha CJI0XHbIE BOMNPOCHI, FreHepaLuus
3anpocoB, N3BMEYEHNE CYLLHOCTEN, N3BIEYEHNE OTHOLLEHWNIA

1. Introduction

Question answering has been an active area of research over past decades. Ques-
tion answering systems can use two kinds of sources to find an answer: unstructured
text corpora [11], [10], and knowledge bases (KB). KBs are an important source of in-
formation which integrates information from different sources [15]. Question an-
swering models using KBs are compact and interpretable [16].

Knowledge base question answering (KBQA) requires matching of a subgraph
with a question. If the question corresponds to a single triplet in a KB, the task is called
simple question answering [1]. Complex question answering requires matching sev-
eral triplets and logical, quantitative and comparative reasoning over knowledge
graphs [13], [4].

One of the key approaches to complex question answering is SPARQL query gen-
eration. LC-QUAD [13] is a dataset with 5,000 questions and corresponding SPARQL

SPARQL query generation for complex question answering with BERT and BiLSTM-based model

queries over DBpedia, which involve logical and quantitative reasoning. LC-QUAD2.0!
[4] is a dataset of 30,000 questions compatible with both DBpedia and Wikidata?,
which contains more types of SPARQL queries compared with previous version. The
queries involve ranking of graph edges, boolean reasoning over more than one triplet
and comparative constraints.

In this paper we describe models for SPARQL query generation trained on
LC-QUAD2.0 dataset. For translation of a question to a SPARQL query, we first define
the type of the query template. Then we fill the empty slots in the template with entities,
relations from Wikidata and constraints. For entity detection we use BERT sequence la-
beling model. Relation ranking is performed by BiLSTM, path ranking—by BERT-based
ranking model. We use pretrained cased 12-layer BERT-Base3. For extraction of compar-
ative constraints we use regular expressions. Our KBQA system is capable of answering
complex questions with logical or comparative reasoning. The proposed KBQA system
was released as a component of open-source DeepPavlov library*.

2. Related work

The first approaches to KBQA considered single-fact questions. Simple Questions
[1] is the most widely used dataset for training models to answer single triplet ques-
tions. The model of [1] uses memory networks to store candidate facts and then score
them by cosine similarity between question and fact vectors (each vector is a product
of trainable embedding matrices and bag-of-ngrams representations of the question
and fact). In [2] relations and entities in candidate triplets are separately ranked. Dot
product of trainable relation embedding and vector representation of the question (fi-
nal hidden states of BIGRU + linear layer) is used for scoring. Dot product of TransE
entity embedding and vector representation of the question is used for entity scoring.
Another approach is generation of the query with character-level encoder-decoder ar-
chitecture [5]. Encoding of questions, entities and relation labels with BiGRU at word
and character level is described in [7].

Decomposition of knowledge-base question answering into entity detection,
linking, relation prediction and answer parsing components is a simple approach but
it is competitive with more complicated architectures [14]. KBQA system proposed
in our work consists of the similar steps and several other steps specific for complex
questions. The approach of [14] utilises vanilla RNNs for entity detection and relation
prediction. These subtasks of KBQA can be solved with BiLSTM and BiGRU [9] and
improve accuracy of [14] on Simple Questions dataset.

Query building for complex question answering includes query generation and
ranking steps. Model proposed by [8] generates candidate paths in the knowledge
graph starting from extracted entities (entity detection and linking is omitted with

https://github.com/AskNowQA/LC-QuAD2.0
https://www.wikidata.org
https://github.com/google-research/bert
https://github.com/deepmipt/DeepPavlov

Evseev D. A., Arkhipov M. Yu.

the assumption that correct entities are given). The question and candidate paths are
encoded with BiLSTM. Dot products of vectors representing the question and candi-
date paths are used to rank candidate paths. The approach of [18] uses Tree-LSTM
which considers tree representations of candidate walks and the question with respect
to the syntactical structure. Assuming that the lists of candidate entities and relations
are given, Tree-LSTM produces latent representations of the question and candidate
queries, which are ranked by the similarity function.

The model of [15] uses message passing for query ranking, which means propa-
gation of confidence scores from candidate entities and relations to the adjacent nodes
in the extracted subgraph. The model also includes entity and relation extraction
steps. The substrings in the questions in LC-QUAD dataset, corresponding to entities
and relations, are tagged “E1”, “E2”, “P1”, “P2”, “C1”, “C2”, which means “first entity”
in the question, “second entity” (if exists), “first relation”, “second relation” (if exists),
“class of first entity”, etc. BILSTM + CRF network was trained for labeling of question
tokens sequence with the corresponding tags. After entity and relation linking, for all
entities in the subgraph the confidence scores are aggregated from adjacent entities
and the entity with the highest score is considered as the answer.

The work of [12] presents Complex Imperative Program Induction from Termi-
nal Rewards, a model which can perform set, logical and arithmetic operations on the
extracted subgraph assuming that the list of gold entities and relations is given. The
query is generated with an imperative sequential program. Each step of the program
selects the atomic operator and a set of previously defined variables (for example,
entities and relations), and writes the result to memory, which is used in subsequent
steps. The model achieves state-of-the-art performance for the Complex Sequental
Question Answering dataset.

KBQA system, proposed in this work, can perform all the steps of complex ques-
tion answering from entity extraction to query generation and is capable of answering
to both simple questions and complex questions with boolean, quantitative and com-
parative reasoning from LC-QUAD2.0 dataset.

3. Overview of LC-QUAD2.0 dataset

Numbers of questions and percentage of the total number of questions for differ-
ent query template types in train and test sets are shown in Table 1.

Table 1: Percentage of different query template types in the dataset

Percentage of Number Number

the total number of questions, of questions,
Query template type of questions train set test set
statement_property 25.5 5,852 1,484
right-subgraph 15.6 3,574 854
center 14.0 3,220 824
Simple question left 7.0 1,604 438
Simple question right 6.5 1,494 378

SPARQL query generation for complex question answering with BERT and BiLSTM-based model

Percentage of Number Number

the total number of questions, of questions,
Query template type of questions train set test set
string matching simple 6.4 1,466 338
contains word
left-subgraph 6.2 1,418 373
boolean with filter 5.8 1,331 341
rank 4.0 921 210
string matching type + 2.9 662 148
relation contains word
two intentions right subgraph 2.6 599 141
boolean double one_hop right 1.8 411 89
subgraph
boolean one_hop right 1.7 399 101
subgraph

“statement_property” are complex questions which deal with a numerical value
or date as an answer or one of the entities (1).

(1) When did Jean-Paul Sartre move to Le Havre?
“center” are single-fact questions (one entity and one relation).

“simple question right” and “simple question left” are single-fact questions and the
answer entity is connected with one of the entities in the question with the
relation “P31” (“instance of”).

“left-subgraph” questions require finding paths in subgraph of the length of 2.
“right-subgraph” are questions with two entities and two relations.

“two intentions right subgraph” questions contain one entity and two relations
and these questions have two answers corresponding to two facts about the
grounding entity.

“boolean one_hop right subgraph” and “boolean double one_hop right
subgraph” require determining whether one or two facts are true or false.
To solve these questions we need to look for these facts in Wikidata and if the
facts exist in the knowledge base, we consider the statement true, otherwise
the statement is false.

“boolean with filter” questions require comparison of the object entity with the
numerical value from the question.

“string matching simple contains word” and “string matching type + relation
contains word” are questions where the answer entity should contain
a particular letter or word.

“rank” questions require ordering of answer entities by ascending or descending.

Evseev D. A., Arkhipov M. Yu
4. Components of proposed KBQA system

4.1. KBQA pipeline

We decompose the task of KBQA into query template prediction, entity detection,
entity linking, relation ranking, path ranking, constraint extraction (if the question has
constraints) and generation of query from extracted entities, relations and constraints.

Let us consider as an example the steps of KBQA (Figure 1) for “statement prop-
erty” question with SPARQL query template (2).

(2) SELECT ?0bj WHERE { wd:Q, p:P; ?s . ?s ps:P; ?0bj .
?s pq:P, ?x filter(contains(?x, N)) }

On entity detection step we extract the entity substring S from the question. After
entity linking step we obtain candidate entities E;, ..., Ey with corresponding confidences
P4, ..., Ppy- Then we extract relations R1, ..., R}, connected to entities Ey, ..., Ey, rank them
with BiLSTM ranking model, and leave 15 relations R}, ..., Rl with maximal confidences
Prq, -y Pris- Number N for the expression “filter(contains(?x, N))” is extracted from the
question with regular expressions. Then we execute SPARQL queries (3)

(3) SELECT ?0bj ?p2 WHERE { wd:E, piR; ?s . ?s ps:R; ?0bj .
?s ?p2 ?x filter(contains(?x, N)) }

for combinations < E;, R;> of entities Ey, ..., Eyand relations Ry, ..., R;s' and obtain the
list of candidate second relations R, ..., Rg?. Combinations of relations < R/, R,*>
are ranked with BERT-based ranking model. The model outputs confidences Pgj.. En-
tity E; and relations R; and R, with maximal confidences product Pg; - Py, are filled

in the slots of the SPARQL query template (4):

(4) SELECT ?0obj WHERE { wd:E; p:R;! ?s . ?s ps:R;! ?0bj . ?s pq:R;?
?x filter(contains(?x, N)) }

Other types of questions are processed similarly: first we find candidate entities, then
extract and rank candidate relations with BiLSTM, if necessary, extract numerical values
with regular expressions, find valid combinations of entities and relations according to the
query template, rank combinations of relations with BERT and consider combination of en-
tities and relations with maximal product of confidences as the required query.

4.2. Classification of questions by query template type

Query template types “right-subgraph”, “simple question right
left”, “left-subgraph”, “center” we united into one class.

“statement_property” questions can be translated into 5 types of SPARQL que-
ries, “rank” questions—into 2 types. Each type is considered as a separate class. All
other types of questions are put into a separate class. Total number of classes is 14.

Classification of questions is performed with BERT-based model from DeepPav-
lov library. Output representation of BERT [CLS] token is fed into a dense layer for
classification into 14 classes. For comparison we used tf-idf+SVC model (Table 2).

” o«
>

simple question

SPARQL query generation for complex question answering with BERT and BiLSTM-based model

Table 2: Accuracy of question classification by query template types

TF-IDF+SVC

90.8 85.5

KBQA

‘When did Jean-Paul Sartre move to Le Havre?

q 3 BERT classification, determine the Ranking of candidate relati
[E““‘Y LG, LI [template type of the SPARQL query [with B STM-based model]
Entity substrings: statement_propery Candidate relations:
Jean-Paul Sartre SELECT ?value WHERE { E1 P1 ?s. ?s P1 E2. ?s P2 ?value} P551 (residence)
Le Havre P793 (significant event)

IGeneratinn of valid candidate queries (from

Candidate entities: (€ of ¢ entities and relations
Q9364 Lwe leave those which occur in the same subgraph)|

Q42810, Q736498 ! !

Candidate queries:
SELECT ?value WHERE {wd:(Q9364 p:P551 ?s. ?s ps:P551 wd:(Q42810 . ?s pq:P580 ?value }
SELECT ?value WHERE {wd:(Q9364 p:P551 ?s. ?s ps:P551 wd: Q42810 . ?s pq:P582 ?value }

Relations in candidate paths: <P551, P580>, <P551, P582>

(ranking of relations in candidate paths with BERT)

Final query:
SELECT ?value WHERE {wd:Q9364 p:P551 ?s . ?s ps:P551 wd:Q42810 . ?s pq:P580 ?value}

Figure 1: KBQA pipeline

4.3. Entity Detection and Entity Linking
Entity Detection is implemented as labeling of sequence of question tokens
Qsoq = W1, W, s Wi} (@)

with one of two labels: “I-TAG” if the token w; is in the entity substring and “O-TAG”
otherwise. For example, in question

(5) When did Jean-Paul Sartre move to Le Havre?

tokens “Jean-Paul”, “Sartre”, “Le”, “Havre” are labelled with “I-TAG”, the other tokens
with “O-TAG”. We prepared the dataset from LC-QUAD2.0 for Entity Detection using
labels of gold entities to find substrings in questions, corresponding to entities and
annotated matched tokens as “I-TAG”. This dataset is used for training of BERT-based
sequence labeling model from DeepPavlov library. Output representations of question
sub-tokens are fed into a dense layer for classification of sub-tokens into classes, cor-
responding to two tags (Figure 2). We obtained F1-score of 87 on test-set.

Evseev D. A., Arkhipov M. Yu.

[Otag | [O-tag | (O-tag | ((O-tag | (O-tag | (Itag) (O-tag)

Fully-connected layer + softmax
for classification of subword tokens

e e JCe)0) (6] (9]

(What][is][the][mpital][of][Russia](?]

Figure 2: BERT for sequence tagging

For all entities in Wikidata we built an inverted index over unigrams in enti-
ty’s label (a dictionary where keys are tokens and values are lists of entities contain-
ing these tokens). Entity Linking is implemented using fuzzy matching of the string
extracted at Entity Detection step with inverted index. For example, tokens “Jean-
Paul” and “Sartre” from the substring “Jean-Paul Sartre” are used as keys to obtain the
list of candidate entities, and candidate entity “Q9364” with the label “Jean-Paul Sar-
tre” has the maximum fuzz ratio of 100. Candidate entities, extracted from inverted
index dictionary, are ranked by fuzz ratio of their titles with the entity substring and
number of relations (the more relations an entity has, the more popular it is).

4.4. Model of relation ranking

The model of relation ranking is inspired by [17] (Figure 3). The sequence
of question tokens g, ..., q, is passed through an embedding lookup layer. The se-
quence of Word2Vec embeddings e, ..., e, is the input of 2-layer BiLSTM to encode the
token sequence with hidden representations hy, ..., h,. For linked entities we extract
all relations from Wikidata which these entities have and consider them as candidate
relations. Candidate relations are encoded with PyTorch-BigGraph embeddings [6]
rel_emb,, ..., rel_emb,. Dot products of each candidate relation embedding and hidden
states rel_emb; + hq, ...,rel_emb; - h, are passed throught softmax layer to obtain coef-
ficients a, ..., a,. Then we sum hidden states weighted with coefficients:

g=> ai-hy @
=1

The model is trained to maximize dot product q - rel_emb; if rel_emb; is the embed-
ding of the right relation and minimize if rel_emb, is the embedding of the wrong relation.

q - rel_emb; is the confidence that rel_emb; is the right relation. For example, for
the question

(6) What periodical literature does Delta Air Lines use as a mouthpiece?

SPARQL query generation for complex question answering with BERT and BiLSTM-based model

with the corresponding SPARQL query

(7) SELECT DISTINCT ?obj WHERE wd:Q188920 wdt:P2813 ?0bj . ?obj wdt:P31
wd:Q1002697

the model is trained to output maximal dot product for embeddings of relations P2813
and P31.

For every question Q, in test set we extracted candidate relations R, ..., Rk for
gold entities E¥, ..., EX. Candidate relations are ranked with relation ranking model
and we check if candidate relation with the maximum score is one of the gold rela-
tions R’l‘g, s R’,;g. We measure the percent of questions in test set which have one of the
gold relations ranked with the highest score (84% of questions) (Table 3). The model
is more accurate if PyTorch-BigGraph embeddings of relations are replaced with aver-
age embeddings of relation title tokens (89%).

Table 3: Percent of questions in test set with one of
the gold relations ranked with highest score

Relation embeddings used in the model % of questions

PyTorch-BigGraph 84
Word2Vec 89
Question embeddings hidden states dot products of hidden multiply hidden states
of question of BiLSTM states and relation by coefficients
tokens embeddings
What —2 h, h, *rel_emb, alpha; *h, ——
periodical h, CE— h, *rel_emb; alpha,*h, ———
literature h, EE— . —
does | e— ... —
Delta —/] I
Air | e— o ‘ —
Lines —— “ o » —
use — o —
as —/ | |
a —/] I
mouthpiece ————) o —
? ——— h, h, *rel_emb; alpha,*h,, ——
instance of, rel_emb, ——
mouthpiece, rel_emb, — q —
industry, rel_emb;, — ‘
rel_eml)k I g*rel_emb, *
—

predict to output
1 if rel_emb; is right relation
0 if rel_emb; is wrong relation

Figure 3: Relation ranking network

Evseev D. A., Arkhipov M. Yu

4.5. BERT for path ranking

Path ranking model is inspired by [8]. The input to the model is the following:
the question q followed by [SEP] token and candidate path

C;=1{Ry,...,R;},L € 11,2} 3

from the set of candidate paths C, ..., C,. For example, one of the candidate paths for
the question

(8) What is stable version of user interface of Amazon Kindle?

is {P1414, P348}, where the label of relation with identificator in Wikidata
“P1414” is “GUI toolkit or framework” and the label of “P348” is “software version”. So,
the input to BERT is the question g and relation titles “GUI toolkit or framework” and
“software version” (Figure 4).

[CLS] [what/[is: [version] of | | [kind| [##1e| | [SEP]| g| ##ui [tool | ##ki ##t 'or framework][[SEP]| [software] [version] [SEP]|

Figure 4: BERT input representation

Output representation of BERT [CLS] token is fed into a dense layer for binary
classification into 2 classes: 1 if the candidate path is the gold path for the ques-
tion (positive sample) and 0 otherwise (negative sample). For training of the model
we generated negative samples in the ratio of 20:1 to positive samples. The model
achieves F1 of 87.2 on the test set.

4.6. Using regular expressions

Regular expressions are used in “statement_property” questions for extraction
of dates and numerical values. “rank” questions require determination of the order
of answer ranking (ascending or descending). For example, words “What is the high-
est”, “the biggest”, “the longest”, etc. point at ascending order (corresponding to “OR-
DER BY ASC(?0bj)” in the SPARQL query) and “the smallest”, “the lowest”, etc. point
at descending order (“ORDER BY DESC(?0bj)”). Such keywords are extracted with
regular expressions. In “boolean with filter” questions regular expressions are used for
extraction of numerical values and comparison operators. For example, in the question

(9) Isthe maximum wavelength of sensitivity of the human eye equal to 700?

the numerical value is “700” and “equal to” corresponds to “=". So the SPARQL query
for the question is

(10) ASK WHERE wd:Q430024 wdt:P3737 ?0bj filter(?obj = 700)

10

SPARQL query generation for complex question answering with BERT and BiLSTM-based model

Table 4: Question answering accuracy

Query template type Answering accuracy

statement_property 51.5
right_subgraph 33.3
center 78.1
Simple question left 67.3
Simple question right 68.7
string matching simple contains word 80.4
left-subgraph 27.9
boolean with filter 75.9
rank 48.5
string matching type + relation contains word 46.9
two intentions right subgraph 43.4
boolean double one_hop right subgraph 63.8
boolean one-hop right subgraph 59.1
Total 56.3

4.7. Results of the KBQA system on LC-QUAD2.0 dataset

Question answering accuracy for different types of questions is shown in Table 4.
The answer is considered correct if the answer entities and numerical values or dates
match with gold answers. The proposed KBQA system gives correct answers to almost
one-half of double-fact questions with numerical values or dates (“statement_prop-
erty”) and questions with ranking of answers (“rank”). The system achieves high scores
on single-fact questions (“center”, “boolean with filter”, “string matching simple contains
word”). Two-hop questions (“left-subgraph” and “right-subgraph”) present difficulties

to the system and are the subject of further research and improvement of the model.

4.8. Results of the KBQA system on LC-QUAD1.0 dataset

We divide questions in LC-QUADLI.0 into the following types: simple (one entity and
one relation in the SPARQL query), simple with type (one entity, one relation and entity,
which defines the type of answer entities), double (two entities and two relations), 2-hop
(one entity and two relations) and boolean (the SPARQL query contains two entities, one
relation and “ASK WHERE” keywords). BERT-based model is used for classification of the
question by 5 query template types. Extraction of keywords, such as “how many”, “count”,
etc. is used to define whether the question requires counting of number of answer entities.

The other details of the solution are the same as in KBQA system for LC-QUAD2.0,
excepting additional tag “T-tag” in BERT sequence labeling model for extraction
of substrings corresponding to the type of the entity.

Our model outperforms QAmp [15] and WQAqua [3]°. We did not compare our
model with [8], because their work does not consider entity detection and linking steps.

5

11

http://lc-quad.sda.tech/lcquad1.0.html

Evseev D. A., Arkhipov M. Yu.

Table 5: Question answering accuracy

System Precision Recall F1 score

Our model 0.60 0.66 0.63
QAmp 0.25 0.50 0.33
WQAqua 0.22 0.38 0.28

5. Conclusion

In this work, we have described question answering system over Wikidata knowl-
edge base. The system translates a natural language question into a query in SPARQL
language, execution of which gives an answer. The proposed KBQA system is capable
of answering complex questions which require logical or comparative reasoning. The
system is the first solution to LC-QUAD2.0 dataset, and we evaluated the performance
of the system for different types of questions in LC-QUAD2.0.

References

1. Bordes, A. et al.: Large-scale simple question answering with memory networks.
CoRR. abs/1506.02075, (2015).

2. Dai, Z. et al.: CFO: Conditional focused neural question answering with large-
scale knowledge bases. In: Proceedings of the 54th annual meeting of the asso-
ciation for computational linguistics (volume 1: Long papers). pp. 800-810 As-
sociation for Computational Linguistics, Berlin, Germany (2016).

3. Diefenbach, D. et al.: Towards a question answering system over the semantic
web. CoRR. abs/1803.00832, (2018).

4. Dubey, M. etal.: Le-quad 2.0: Alarge dataset for complex question answering over
wikidata and dbpedia. In: International semantic web conference. pp. 69-78,
Springer (2019).

5. He, X, Golub, D.: Character-level question answering with attention. In: Proceed-
ings of the 2016 conference on empirical methods in natural language processing.
pp. 1598-1607, Association for Computational Linguistics, Austin, Texas (2016).

6. Lerer, A. et al.: Pytorch-biggraph: A large-scale graph embedding system. arXiv
preprint arXiv:1903.12287. (2019).

7. Lukovnikov, D. et al.: Neural network-based question answering over knowledge
graphs on word and character level. In: Proceedings of the 26th international
conference on world wide web. pp. 1211-1220, International World Wide Web
Conferences Steering Committee, Republic; Canton of Geneva, CHE (2017).

8. Maheshwari, G. et al.: Learning to rank query graphs for complex question an-
swering over knowledge graphs. In: International semantic web conference.
pp. 487-504, Springer (2019).

12

SPARQL query generation for complex question answering with BERT and BiLSTM-based model

10.

11.

12.

13.

14.

15.

16.

17.

18.

Mohammed, S. et al.: Strong baselines for simple question answering over knowl-
edge graphs with and without neural networks. In: Proceedings of the 2018 con-
ference of the north American chapter of the association for computational lin-
guistics: Human language technologies, volume 2 (short papers). pp. 291-296,
Association for Computational Linguistics, New Orleans, Louisiana (2018).
Rajpurkar, P. et al.: Know what you don’t know: Unanswerable questions for
squad. arXiv preprint arXiv:1806.03822. (2018).

Rajpurkar, P. et al.: SQuAD: 100,000+ questions for machine comprehension
of text. In: Proceedings of the 2016 conference on empirical methods in natural
language processing. pp. 2383-2392, Association for Computational Linguistics,
Austin, Texas (2016).

Saha, A. et al.: Complex program induction for querying knowledge bases in the
absence of gold programs. Transactions of the Association for Computational
Linguistics. 7, 185-200 (2019).

Trivedi, P. et al.: Lc-quad: A corpus for complex question answering over knowl-
edge graphs. In: International semantic web conference. pp. 210-218, Springer
(2017).

Ture, F., Jojic, O.: No need to pay attention: Simple recurrent neural networks
work! In: Proceedings of the 2017 conference on empirical methods in natural
language processing. pp. 2866-2872, Association for Computational Linguistics,
Copenhagen, Denmark (2017).

Vakulenko, S. et al.: Message passing for complex question answering over
knowledge graphs. In: Proceedings of the 28th acm international conference
on information and knowledge management. pp. 1431-1440 (2019).

Wilcke, X. et al.: The knowledge graph as the default data model for learning
on heterogeneous knowledge. Data Science. 1, 1-2, 39-57 (2017).

Xiong, W. et al.: Improving question answering over incomplete kbs with knowl-
edge-aware reader. arXiv preprint arXiv:1905.07098. (2019).

Zafar, H. et al.: Formal query generation for question answering over knowledge
bases. In: European semantic web conference. pp. 714-728, Springer (2018).

13

	Evseev D. A. & Arkhipov M. Yu.: SPARQL query generation for complex question answering
	Introduction
	Related work
	Overview of LC-QUAD2.0 dataset
	Components of proposed KBQA system
	KBQA pipeline
	Classification of questions by query template type
	Entity Detection and Entity Linking
	Model of relation ranking
	BERT for path ranking
	Using regular expressions
	Results of the KBQA system on LC-QUAD2.0 dataset
	Results of the KBQA system on LC-QUAD1.0 dataset

	Conclusion
	References

