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Abstract. This paper studies stability of the paths of stochastic differential equa-
tions (SDE) driven by time-changed Lévy noise. The conditions for the solution
of time-changed SDE to be path stable and exponentially path stable are given.
We consider the time-changed Lévy noises with small and large jumps. Moreover,
we reveal the important role of the time drift in determining the path stability of
the solution. Related examples are provided. This extends the moment stability of
related SDEs studied in Nane and Ni (2017) and Wu (2016).

1. Introduction

Study of stochastic differential equations (SDE) is a mature field of research.
Numerous types of SDEs have been used to model different phenomena in various
areas, such as unstable stock prices in finance (Merton, 1976), dynamics of biological
systems (Jha and Langmead, 2012), and Kalman filter in navigation control. In
1892, Lyapunov (1992) introduced the concept of stability of a dynamical system.
Since then, the concept of stability have been studied widely in different senses,
including stochastical stability, almost sure stability, exponential stability, etc. Mao
(2008) investigated various types of stabilities for the following SDE

dX(t) = f(X(t))dt+ g(X(t))dB(t), t ≥ 0, (1.1)

with X(0) = x0, where B(t) is the standard Brownian motion.
Siakalli (2009) extends Mao’s results to SDEs driven by Lévy noise

dX(t) = f(X(t−))dt+ g(X(t−))dB(t) +

∫
|y|<c

h(X(t−), y)Ñ(dt, dy), t ≥ 0, (1.2)
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SDEs driven by time-changed Lévy noise, Lyapunov function method.

479

http://alea.impa.br/english/index_v15.htm
https://doi.org/10.30757/ALEA.v15-20


480 E. Nane and Y. Ni

with X(0) = x0, where Ñ is the compensated Poisson measure. This type of SDEs
provides as a tool of modeling the price of financial assets with continuous change.
However, empirical observations show that some characteristics of dynamic process
can not be captured by regular SDE. For example, quantitative financial analysts
exploit the Black-Scholes framework in derivative pricing, in which the stock price
is modeled by SDE such as Brownian motion and jump diffusion. However, some
stocks are not actively traded, therefore their prices stay constant for some time
periods, see Figure 1.1. Such phenomenon can not be model by regular SDE,
but the time-changed SDE can describe it. A simple example of time-changed
SDE is dX(t) = σX(t−)dB(Et) + δ

∫
|y|<cX(t−)Ñ(dEt, dy) where X(0) = x0 and

{Et, t ≥ 0} is the inverse of an α − stable subordinator (Meerschaert and Straka,
2013). The simulation in Figure 1.2 indicates that the time-changed SDE captures
not only the randomness of a regular jump diffusion, but also the empirical observed
periods of constant values. Time-changed SDEs allow more flexibility in modelling
and thus become popular among researchers (Shokrollahi et al., 2016; Wu, 2016).

Figure 1.1. Log price of the Kalev stock (Janczura and
Wylomańska, 2009)

It is natural to investigate the characteristics of time-changed SDEs, including
the stability property. What are the sufficient conditions for a time-changed SDE
to be stable? How would the changed time Et influence the stability? Kobayashi
(2011) introduces the duality theorem between time-changed SDEs and the corre-
sponding non-time-changed SDEs, and established the Itô formula for time-changed
SDEs. Soon after Kobayashi’s fruitful results, Wu (2016) establishes the stochas-
tic and moment stabilities of the solution to the SDEs driven by time-changed
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Figure 1.2. Simulation of time-changed SDE dX(t) =

σX(t−)dB(Et) + δ
∫
|y|<cX(t−)Ñ(dEt, dy)

Brownian motion

dX(t) = f(t, Et, X(t−))dt+k(t, Et, X(t−))dEt+g(t, Et, X(t−))dBEt , t ≥ 0, (1.3)

with X(0) = x0, where Et is specified as the inverse of an α-stable subordinator,
α ∈ (0, 1). In our recent paper (Nane and Ni, 2017), we focus on the following
time-changed SDE

dX(t) = f(t, Et, X(t−))dt+ k(t, Et, X(t−))dEt + g(t, Et, X(t−))dBEt

+

∫
|y|<c

h(t, Et, X(t−), y)Ñ(dEt, dy),
(1.4)

with X(t0) = x0, where Et is the inverse of a strictly increasing subordinator,
and discuss stability of its solution in probability and moment senses, including
stochastical stability, stochastical asymptotic stability, global stochastic asymptotic
stability, pth moment exponential stability and pth moment asymptotic stability.

In this paper, we analyze the path stabilities of the solution to (1.4), then we
move forward to incorporate not only the small jumps but also large jumps:

dX(t) = f(t, Et, X(t−))dt+ k(t, Et, X(t−))dEt + g(t, Et, X(t−))dBEt

+

∫
|y|<c

h(y)X(t−)Ñ(dEt, dy) +

∫
|y|≥c

H(y)X(t−)N(dEt, dy).
(1.5)
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with X(t0) = x0, where Et is the inverse of a ”mixed” subordinator.

Remark 1.1. This study extends existing research in two aspects. First, the path
stability of a dynamic system is more desirable than the moment stability, it pro-
vides more information about how the dynamic system becomes stable. Second,
existing articles mainly focus on SDEs driven by Brownian motion and small jumps
(compensated Poisson jumps), we incorporate the linear large jumps into the target
SDE, which extends existing models in Nane and Ni (2017) and Wu (2016).

In the remaining parts of this paper, further needed concepts and related back-
ground will be given in section 2. In section 3, the conditions for the solution to our
target time-changed SDEs to be almost sure exponential path stability and almost
sure path stability will be given. Connections between stability of the solution to
time-changed SDE and that of the corresponding non-time-changed SDE will be
disclosed and some examples will be provided.

2. Preliminaries

Let (Ω,F , (Ft), P ) be a filtered probability space satisfying usual hypotheses
of completeness and right continuity. Assume that Ft-adapted Poisson random
measure N on R+×(R−{0}) is independent of the Brownian motion B(t), define its

compensator Ñ(dt, dy) = N(dt, dy)−ν(dy)dt, where ν is a Lévy measure satisfying∫
R−{0}(|y|

2 ∧ 1)ν(dy) <∞.

Let {D(t), t ≥ 0} be a right continuous left limit (RCLL) increasing Lévy process
that is called subordinator starting from 0 with Laplace transform

Ee−sD(t) = e−tψ(s), (2.1)

where Laplace exponent ψ(s) =
∫∞
0

(1− e−sx)Π(dx) with
∫∞
0

(1 ∧ x)Π(dx) <∞.
Define its inverse

Et := inf{τ > 0 : D(τ) > t}. (2.2)

The concept of regular variation is needed to introduce the mixed stable sub-
ordinator. A measurable function R is regularly varying at infinity with exponent
γ ∈ R, denoted by R ∈ RV∞(γ), if R is eventually positive and R(ct)/R(t) → cγ

as t → ∞, for any c > 0. Similarly, a measurable function R is regularly varying
at zero with exponent γ ∈ R, denoted by R ∈ RV0(γ), if R is positive in some
neighborhood of zero and R(ct)/R(t)→ cγ as t→ 0, for any c > 0.

Given a measurable function p : (0, 1) → R+ such that p ∈ RV0(γ − 1) for

some γ > 0, let L(u) = C
∫ 1

0
u−αp(α)dα and C−1 =

∫ 1

0
p(α)dα. Without loss of

generality, let C = 1, then p is a probability density of Lévy measure of the α-stable
subordinators. Let {D(t)}t≥0 be a subordinator such that D(1) has Lévy-Khinchin
representation [0, 0, φ] and the Lévy measure φ is defined as φ(u,∞) = L(u), then
{D(t)}t≥0 is the so called ”mixed” stable subordinator. In this case the Laplace
exponent is given by

ψ(s) =

∫ 1

0

Γ(1− β)sβp(β)dβ (2.3)

By Theorem 3.9 in Meerschaert and Scheffler (2006), there exists a function
W ∈ RV∞(0) such that

E[E(t)] ∼ (log t)γW (log t)−1 as t→∞. (2.4)
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We require f, k, g, h,H in (1.4) and (1.5) to be real-valued functions and satisfy
the following Lipschitz condition in Assumption 2.1, growth condition in Assump-
tion 2.2 and Assumption 2.3. Under these assumptions, by Lemma 4.1 in Kobayashi
(2011), both of the equations (1.4) and (1.5) with initial condition X(t0) = x0 have
unique Gt = FEt-adapted solution processes X(t) .

Assumption 2.1. (Lipschitz condition) There exists a positive constant K1 such
that∣∣∣f(t1, t2, x)− f(t1, t2, y)

∣∣∣2 +
∣∣∣k(t1, t2, x)− k(t1, t2, y)

∣∣∣2 +
∣∣∣g(t1, t2, x)− g(t1, t2, y)

∣∣∣2
+

∫
|z|<c

∣∣∣h(t1, t2, x, z)− h(t1, t2, y, z)
∣∣∣2ν(dz) ≤ K1|x− y|2,

(2.5)
for all t1, t2 ∈ R+ and x, y ∈ R.

Assumption 2.2. (Growth condition) There exists a positive constant K2 such that,
for all t1, t2 ∈ R+ and x ∈ R,

|f(t1, t2, x)|2 + |k(t1, t2, x)|2 + |g(t1, t2, x)|2

+

∫
|y|<c

|h(t1, t2, x, y)|2ν(dy) ≤ K2(1 + |x|2).
(2.6)

Assumption 2.3. If X(t) is right continuous with left limits (rcll) and a Gt-adapted
process, then

f(t, Et, X(t−)), k(t, Et, X(t−)), g(t, Et, X(t−)), h(t, Et, X(t−), y) ∈ L(Gt), (2.7)

where L(Gt) denotes the class of left continuous with right limits and Gt-adapted
processes.

Note that the Stochastic differential equation (1.4) involves only Lévy process
with small jumps and general scalars for the drift and the standard Brownian
motion and Poisson jump; while the linear stochastic differential equation (1.5)
contains both small and large Poisson jumps with linear scalars. Next, we define
two different types of stability.

Definition 2.4. (Definition 3.1 in Mao, 2008) The trivial solution of the time-
changed SDE (1.4) is said to be almost surely exponentially path stable if

lim sup
t→∞

1

t
log |X(t; t0, x0)| < 0 a.s. (2.8)

for all x0 ∈ R.

Definition 2.5. The trivial solution of the time-changed SDE (1.4) is said to be
almost surely path stable if there exists a nonnegative random process {ν(t), t ≥ 0}
such that

lim
t→∞

ν(t) =∞, (2.9)

and

lim sup
t→∞

1

ν(t)
log |X(t; t0, x0)| < 0 a.s. (2.10)

for all x0 ∈ R.

The Itô formula is heavily used in our proofs. We derive the following Itô formula
for time-changed Lévy noise and will utilize it frequently in the remaining sections.
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Lemma 2.6. (Itô formula for time-changed Lévy noise) Let D(t) be a rcll subor-
dinator and its inverse process Et := inf{τ > 0 : D(τ) > t}. Define a filtration
{Gt}t≥0 by Gt = FEt . Let X be a process satisfying the following:

X(t) = x0 +

∫ t

t0

f(s, Es, X(s−))ds+

∫ t

t0

k(s, Es, X(s−))dEs

+

∫ t

t0

g(s, Es, X(s−))dBEs +

∫ t

t0

∫
|y|<c

h(s, Es, X(s−), y)Ñ(dEs, dy)

+

∫ t

t0

∫
|y|≥c

H(s, Es, X(s−), y)N(dEs, dy),

(2.11)

where f, k, g, h,H are measurable functions such that all integrals are defined, c is
a positive constant.

Then, for all F : R+ × R+ × R → R in C1,1,2(R+ × R+ × R,R), we have with
probability one,

F (t, Et, X(t))− F (t0, Et0 , x0)

=

∫ t

t0

L1F (s, Es, X(s−))ds+

∫ t

t0

L2F (s, Es, X(s−))dEs

+

∫ t

t0

∫
|y|<c

[
F (s, Es, X(s−) + h(s, Es, X(s−), y))− F (s, Es, X(s−))

]
Ñ(dEs, dy)

+

∫ t

t0

∫
|y|≥c

[
F (s, Es, X(s−) +H(s, Es, X(s−), y))− F (s, Es, X(s−))

]
N(dEs, dy)

+

∫ t

t0

Fx(s, Es, X(s−))g(s, Es, X(s−))dBEs ,

(2.12)
where

L1F (t1, t2, x) = Ft1(t1, t2, x) + Fx(t1, t2, x)f(t1, t2, x),

L2F (t1, t2, x) = Ft2(t1, t2, x) + Fx(t1, t2, x)k(t1, t2, x) +
1

2
g2(t1, t2, x)Fxx(t1, t2, x)

+

∫
|y|<c

[
F (t1, t2, x+ h(t1, t2, x, y))− F (t1, t2, x)− Fx(t1, t2, x)h(t1, t2, x, y)

]
ν(dy).

(2.13)

Note that the proof of the Itô formula for time-changed Lévy noise follows by
similar ideas as in the proof of Lemma 3.1 in Nane and Ni (2017), thus the details
are omitted. To perform future analysis, we need some conditions under which the
solutions of (1.4) can not reach the origin after certain time t0 given that X(t0) 6= 0.

Assumption 2.7. For any θ > 0 there exists Kθ > 0, such that

|k(t1, t2, x)|+ |g(t1, t2, x)|+ 2

∫
|y|<c

|h(t1, t2, x, y)|(|x|+ |h(t1, t2, x, y)|)
|x+ h(t1, t2, x, y)|

ν(dy)

≤ Kθ|x|
(2.14)

and

|f(t1, t2, x)| ≤ Kθ|x|2 , for 0 < |x| ≤ θ and t1, t2 ∈ R+. (2.15)
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Lemma 2.8. Given that the assumption (2.7) holds, the solution of (1.4) satisfies

P (X(t) 6= 0 for all t ≥ t0) = 1, (2.16)

if x0 6= 0.

Proof : We follow the idea in the proof of Lemma 3.4.4 in Siakalli (2009) and prove
this result by contradiction. Suppose that (2.16) is not true, that is, there exists
initial condition x0 6= 0 and stopping time τ with P (τ <∞) > 0 where

τ = inf{t ≥ t0 : |X(t)| = 0}. (2.17)

Since the paths of X(t) are right continuous with left limit (rcll), there exist
T > 0 and θ > 1 sufficiently large such that P (B) > 0, where

B = {w ∈ Ω : τ(w) ≤ T and |X(t)(w)| ≤ θ − 1 for all t0 < t < τ(w)}. (2.18)

Next, define another stopping time

τε = inf{t ≥ t0 : |X(t)| ≤ ε or |X(t)| ≥ θ} (2.19)

for each 0 < ε < |X(t0)|.
Let λ = 2Kθ + K2

θ be a constant and define Z(t) = e−λEt |X(t)|−1. Since
F (t1, t2, x) = e−λt2 |x|−1 is in C1,1,2(R+×R+×(R\0)), and by definition of τε, X(t)
will not reach 0 for t0 ≤ t ≤ τε∧T , so Itô formula can be applied to e−λ(Eτε∧T )|X(τε∧
T )|−1.

By (2.14) and (2.15),

e−λ(Eτε∧T )|X(τε ∧ T )|−1 − |x0|−1

=

∫ τε∧T

t0

e−λEs [−X(s−)f(s, Es, X(s−))

|X(s−)|3
]ds+

∫ τε∧T

t0

e−λEs
g(s, Es, X(s−))2

|X(s−)|3
dEs

+

∫ τε∧T

t0

e−λEs
−1

|X(s−)|3
[
λ|X(s−)|2dEs + k(s, Es, X(s−))X(s−)dEs

+ g(s, Es, X(s−))X(s−)dBEs

]
+

∫ τε∧T

t0

∫
|y|<c

e−λEs
[ 1

|X(s−) + h(s, Es, X(s−), y)|
− 1

|X(s−)|

]
Ñ(dEs, dy)

+

∫ τε∧T

t0

∫
|y|<c

e−λEs
[ 1

|X(s−) + h(s, Es, X(s−), y)|
− 1

|X(s−)|

+
X(s−)h(s, Es, X(s−), y)

|X(s−)|3
]
ν(dy)dEs

≤
∫ τε∧T

t0

e−λEsKθds+

∫ τε∧T

t0

e−λEs
−g(s, Es, X(s−))X(s−)

|X(s−)|3
dBEs

+

∫ τε∧T

t0

e−λEs

[
−λ

|X(s−)|
+
−k(s, Es, X(s−))X(s−)

|X(s−)|3
+
g(s, Es, X(s−))2

|X(s−)|3

+

∫
|y|<c

[ 1

|X(s−) + h(s, Es, X(s−), y)|
− 1

|X(s−)|

+
X(s−)h(s, Es, X(s−), y)

|X(s−)|3
]
ν(dy)

]
dEs
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+

∫ τε∧T

t0

∫
|y|<c

e−λEs
[ 1

|X(s−) + h(s, Es, X(s−), y)|
− 1

|X(s−)|

]
Ñ(dEs, dy)

≤ Kθτε ∧ T +

∫ τε∧T

t0

e−λEs
[ −λ
|X(s−)|

+
2Kθ +K2

θ

|X(s−)|

]
dEs

+

∫ τε∧T

t0

e−λEs
−g(s, Es, X(s−))X(s−)

|X(s−)|3
dBEs

+

∫ τε∧T

t0

∫
|y|<c

e−λEs
[ 1

|X(s−) + h(s, Es, X(s−), y)|
− 1

|X(s−)|

]
Ñ(dEs, dy)

≤ KθT +

∫ τε∧T

t0

e−λEs
−g(s, Es, X(s−))X(s−)

|X(s−)|3
dBEs

+

∫ τε∧T

t0

∫
|y|<c

e−λEs
[ 1

|X(s−) + h(s, Es, X(s−), y)|
− 1

|X(s−)|

]
Ñ(dEs, dy) (2.20)

The penultimate inequality is derived from lemma 3.4.2 on page 54 of Siakalli

(2009), which states that 1
|x+y| −

1
|x| + xy

|x|3 ≤
2|y|
|x|2

(|y|+|x|)
|x+y| for x, y, x+ y 6= 0, thus∫

|y|<c

[ 1

|X(s−) + h(s, Es, X(s−), y)|
− 1

|X(s−)|
+
X(s−)h(s, Es, X(s−), y)

|X(s−)|3
]
ν(dy)

≤
∫
|y|<c

2|h(X(s, Es, s−), y)|
|X(s−)|2

[ |h(s, Es, X(s−), y)|+ |X(s−)|
|h(s, Es, X(s−), y) +X(s−)|

]
ν(dy)

=
1

|X(s−)|2

∫
|y|<c

2|h(s, Es, X(s−), y)|(|h(s, Es, X(s−), y)|+ |X(s−)|)
|h(s, Es, X(s−), y) +X(s−)|

ν(dy)

≤ Kθ|X(s−)|
|X(s−)|2

=
Kθ

|X(s−)|
.

(2.21)
Observe that the last two terms in the last line of the inequality (2.20) are

martingales. Then by taking expectations of both sides, we derive that

E
[
e−λ(Eτε∧T )|X(τε ∧ T )|−1

]
≤ |x0|−1 +KθT. (2.22)

If w ∈ B, then τε(w) ≤ T and |X(τε(w))| ≤ ε, then

E
[
e−λEτε∧T ε−11B

]
≤ E

[
e−λEτε∧T |X(τε(w))|−11B

]
≤ E

[
e−λEτε∧T |X(τε(w))|−1

]
≤ |x0|−1 +KθT.

(2.23)

Recall the reverse Hölder’s inequality: for all p > 1

E(|XY |) ≥ (E|X|1/p)p(E(|Y |−1/(p−1)))−(p−1).

We use the reverse Hölder’s inequality with p = 2, X = 1B and Y = e−λEτε∧T .
Since X1/2 = X, this gives

[P(B)]2

[
E(eλEτε∧T )

]−1
≤ E

[
e−λEτε∧T 1B

]
≤ ε(|x0|−1 +KθT ), for all ε ≥ 0.

Since the inverse subordinator has finite exponential moment, E(e(λEτε∧T )) is
finite for any fixed time T , see Lemma 8 in Jum and Kobayashi (2016). Then,
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letting ε → 0, we obtain P (B) = 0, which contradicts the assumption, thus the
desired result is correct. �

Remark 2.9. When the Laplace exponent of the subordinator is given by (2.3),
an alternative method to show that the expectation E(e(λEτε∧T )) is finite is to
use the moments of Et. Since {Et, t ≥ 0} is nonnegative and nondecreasing, we
have τε ∧ T ≤ T . Because λ > 0, ex is a strictly positive and increasing function,
E(eλEτε∧T ) ≤ E(eλET ). Thus, it is sufficient to show that E(eλET ) is finite. By
Theorem 3.9 in Meerschaert and Scheffler (2006), there exists a function W ∈
RV∞(0) such that for any n > 0,γ > 0 and sufficiently large t,

E[Ent ] ∼ (log t)γnW (log t)−n. (2.24)

By Taylor expansion and Fubini Theorem,

E[exp(λEt)] = E[

∞∑
n=0

λnEt
n

n!
] =

∞∑
n=0

λnE[Et
n]

n!
∼
∞∑
n=0

λn(log t)γnW (log t)−n

n!

=

∞∑
n=0

(λ(log t)γW (log t)−1)n

n!
= exp(λ(log t)γW (log t)−1).

(2.25)
Hence, for fixed large t, E[exp(λEt)] ∼ exp(λ(log t)γW (log t)−1) is finite.

A similar method applies when the Laplace exponent of the subordinator D(t)
is given by

ψ(s) =

k∑
i=1

cis
βi , (2.26)

where
∑k
i=1 ci = 1 and 0 < β1 < β2 < ... < βk < 1. Then the Laplace transform

of the n-th moment of Et is L(E(Ent ))(s) = n!
s(
∑k
i=1 cis

βi )n
; see Lemma 8 in Jum

and Kobayashi (2016). Using the Karamata Tauberian Theorem (see Feller, 1971,
Theorem 1 and Lemma on pp. 443-446) we can deduce that for large t, E(Ent ) ∼
Cnt

nβ1 .

Lemma 2.10. (Time-Changed Exponential Martingale Inequality) Let D(t) be a
rcll subordinator and its inverse process Et := inf{τ > 0 : D(τ) > t}. Let T,
λ, κ be any positive numbers, Bc = {y ∈ R : |y| < c}. Assume random func-

tions g : R+ → R and h : R+ × Bc → R satisfy E[
∫ T
0
|g(t)|2dEt] < ∞ and

E[
∫ T
0

∫
|y|<c |h(t, y)|2ν(dy)dEt] <∞, then

P
[

sup
0≤t≤T

{∫ t

0

g(s)dBEs −
λ

2

∫ t

0

|g(s)|2dEs +

∫ t

0

∫
|y|<c

h(s, y)Ñ(dEs, dy)

− 1

λ

∫ t

0

∫
|y|<c

[
exp(λh(s, y))− 1− λh(s, y)

]
ν(dy)dEs

}
> κ

]
≤ exp(−λκ)

(2.27)

Proof : Define a sequence of stopping times (τn, n ≥ 1) as below

τn = inf
{
t ≥ 0 :

∣∣∣∣ ∫ t

0

g(s)dBEs

∣∣∣∣+
λ

2

∫ t

0

|g(s)|2dEs +

∣∣∣∣ ∫ t

0

∫
|y|<c

h(s, y)Ñ(dEs, dy)

∣∣∣∣
+

1

λ

∣∣∣∣ ∫ t

0

∫
|y|<c

[
exp(λh(s, y))− 1− λh(s, y)

]
ν(dy)dEs

∣∣∣∣ ≥ n}, for n ≥ 1.

(2.28)
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Note that τn →∞ as n→∞ a.s. Define the following Itô process

Xn(t) = λ

∫ t

0

g(s)1[0,τn](s)dBEs + λ

∫ t

0

∫
|y|<c

h(s, y)1[0,τn](s)Ñ(dEs, dy)

−
∫ t

0

[
λ2

2
|g(s)|2 +

∫
|y|<c

[
exp(λh(s, y))− 1− λh(s, y)

]
ν(dy)

]
1[0,τn](s)dEs,

(2.29)
with Xn(0) = 0 for all n ≥ 0. Then for all 0 ≤ t ≤ T

|Xn(t)| ≤ λ
∣∣∣ ∫ t

0

g(s)1[0,τn](s)dBEs

∣∣∣+
∣∣∣λ ∫ t

0

∫
|y|<c

h(s, y)1[0,τn](s)Ñ(dEs, dy)
∣∣∣

+
λ2

2

∫ t

0

|g(s)|21[0,τn](s)dEs

+
∣∣∣ ∫ t

0

∫
|y|<c

[
exp(λh(s, y))− 1− λh(s, y)

]
1[0,τn](s)ν(dy)dEs

∣∣∣
≤ λn.

(2.30)
Let Z(t) = exp(Xn(t)), by the time-changed Itô’s formula (2.12),

exp(Xn(t))− exp(x0) =

=

∫ t

0

exp(Xn(s))
[
− λ2

2
|g(s)|21[0,τn](s)

−
∫
|y|<c

[
exp(λh(s, y))− 1− λh(s, y)

]
1[0,τn](s)ν(dy)

+

∫
|y|<c

[
exp(λh(s, y))− 1− λh(s, y)

]
1[0,τn](s)ν(dy) +

λ2

2
|g(s)|21[0,τn](s)

]
dEs

+

∫ t

0

∫
|y|<c

[
exp(Xn(s) + λh(s, y))− exp(Xn(s))

]
1[0,τn](s)Ñ(dEs, dy)

+ λ

∫ t

0

exp(Xn(s))g(s)1[0,τn](s)dBEs

=

∫ t

0

∫
|y|<c

[
exp(Xn(s) + λh(s, y))− exp(Xn(s))

]
1[0,τn](s)Ñ(dEs, dy)

+ λ

∫ t

0

exp(Xn(s))g(s)1[0,τn](s)dBEs ,

(2.31)
thus {exp(Xn(t)), 0 ≤ t ≤ T} is a local martingale. Since we have

sup
t∈[0,T ]

exp(Xn(t)) ≤ exp(λn) a.s. (2.32)

there exists a sequence of stopping times (Tm,m ∈ N) with (Tm → ∞)(a.s.) as
n→∞ such that for all 0 ≤ s ≤ t ≤ T

E[exp(Xn(t ∧ Tm))|Fs] = exp(Xn(s ∧ Tm)) ≤ exp(λn) a.s. (2.33)
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By Dominated Convergence Theorem, we have

E[exp(Xn(t))|Fs] = lim
m→∞

E[exp(Xn(t ∧ Tm))|Fs]

= lim
m→∞

exp(Xn(s ∧ Tm)) = exp(Xn(s)),
(2.34)

that is, Z(t) = exp(Xn(t)) is a martingale for all 0 ≤ t ≤ T with E[exp(Xn(t))] = 1.
Apply Doob’s martingale inequality

P
[

sup
0≤t≤T

exp(Xn(t)) ≥ exp(λκ)
]
≤ exp(−λκ)E[exp(Xn(T ))] = exp(−λκ), (2.35)

equivalently,

P
[

sup
0≤t≤T

Xn(t)

λ
≥ κ

]
≤ exp(−λκ), (2.36)

writing Xn(t) explicitly, we have

P
[

sup
0≤t≤T

{∫ t

0

g(s)1[0,τn](s)dBEs −
λ

2

∫ t

0

|g(s)|21[0,τn](s)dEs

+

∫ t

0

∫
|y|<c

h(s, y)1[0,τn](s)Ñ(dEs, dy)

− 1

λ

∫ t

0

∫
|y|<c

[
exp(λh(s, y))− 1− λh(s, y)

]
1[0,τn](s)ν(dy)dEs

}
≥ κ

]
≤ exp(−λκ).

(2.37)
Define

An =
{
w ∈ Ω : sup

0≤t≤T

{∫ t

0

g(s)1[0,τn](s)dBEs −
λ

2

∫ t

0

|g(s)|21[0,τn](s)dEs

+

∫ t

0

∫
|y|<c

h(s, y)1[0,τn](s)Ñ(dEs, dy)

− 1

λ

∫ t

0

∫
|y|<c

[
exp(λh(s, y))− 1− λh(s, y)

]
1[0,τn](s)ν(dy)dEs

}
≥ κ

}
,

(2.38)

then P(An) ≤ exp(−λκ).
Since

P[lim inf
n→∞

An] ≤ lim inf
n→∞

P(An) ≤ lim sup
n→∞

P(An) ≤ P[lim sup
n→∞

An] (2.39)

and

lim sup
n→∞

P(An) ≤ exp(−λκ), (2.40)

also

lim sup
n→∞

An = lim inf
n→∞

An = A, (2.41)

where

A =
{
w ∈ Ω : sup

0≤t≤T

{∫ t

0

g(s)dBEs −
λ

2

∫ t

0

|g(s)|2dEs +

∫ t

0

∫
|y|<c

h(s, y)Ñ(dEs, dy)

− 1

λ

∫ t

0

∫
|y|<c

[
exp(λh(s, y))− 1− λh(s, y)

]
ν(dy)dEs

}
≥ κ

}
,

(2.42)
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thus

P(A) = P[lim inf
n→∞

An] ≤ lim sup
n→∞

P (An) ≤ lim sup
n→∞

exp(−λκ) = exp(−λκ). (2.43)

�

The next result can be considered as a strong law of large numbers for the inverse
subordinator.

Lemma 2.11. Let {Et}t≥0 be the inverse of the mixed stable subordinator D(t)
with Laplace exponent given in (2.3) as defined in (2.2), then

lim
t→∞

Et
t

= 0, a.s. (2.44)

Proof : Fix ε > 0 and define

An =
{

sup
2n<t<2n+1

∣∣∣Et
t

∣∣∣ > ε
}
, (2.45)

then, by Markov’s inequality and equation (2.4), as n→∞, for some γ > 0,

εP(An) ≤ E
[

sup
2n<t<2n+1

∣∣∣Et
t

∣∣∣] ≤ E
[∣∣∣E2n+1

2n

∣∣∣] ∼ [log(2n+1)]γW (log(2n+1))−1

2n

=
(n+ 1)γ(log 2)γW (log(2n+1))−1

2n
∼ C(n+ 1)γ

2n
.

(2.46)
By the ratio test,

∑∞
n=1 P(An) <∞. Applying Borel-Cantelli Lemma, we have

lim
t→∞

Et
t

= 0, a.s. (2.47)

�

Remark 2.12. Lemma 2.11 can also be proved for discrete case with the help of
Laplace transform. Let Et be an inverse of the subordinator with Laplace exponent

ψ(s) =
∑k
i=1 cis

βi , where
∑k
i=1 ci = 1 and 0 < β1 < β2 < ... < βk < 1. Then the

Laplace transform of the nth moment of Et is L(E(Ent ))(s) = n!
s(
∑k
i=1 cis

βi )n
.

By a Karamata Tauberian Theorem (see Feller, 1971, Theorem 1 and Lemma
on pp. 443-446), since L(E(Et))(s) ∼ cs−(1+β1) as s → 0 then E(Et) ∼ Ctβ1 as

t→∞. Utilizing this result, εP(An) ≤ E
[∣∣∣E2n+1

2n

∣∣∣] ∼ (2n+1)β1

2n = 2β12−(1−β1)n, thus∑∞
n=1 P(An) <∞. Applying Borel-Cantelli Lemma, we have limt→∞

Et
t = 0, a.s.

Remark 2.13. We believe that Lemma 2.11 should hold for the inverse of any strictly
increasing subordinator. But we could not prove this in this paper. We are missing
the moment asymptotics for the inverse of any strictly increasing subordinator. We
will work on this result in a future project.

3. Main Results

In this section, we will analyze conditions for almost sure exponential path sta-
bility and almost sure path stability for the SDEs in equations (1.4) and (1.5),
followed by some examples.
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3.1. Stochastic Differential Equations driven by Time-Changed Lévy Noise with
Small Jumps.

Theorem 3.1. Suppose that Assumption 2.7 holds. Let V ∈ C2(R;R+) and let
p > 0, c1 > 0, c2 ∈ R, c3 ∈ R, c4 ≥ 0, c5 > 0 such that for all x0 6= 0 and t1, t2 ∈ R+,

(i)c1|x|p ≤ V (x), (ii)L1V (x) ≤ c2V (x), (iii)L2V (x) ≤ c3V (x),

(iv)|(∂xV (x))g(t1, t2, x)|2 ≥ c4(V (x))2,

(v)

∫
|y|<c

[
log
(V (x+ h(t1, t2, x, y))

V (x)

)
− V (x+ h(t1, t2, x, y))− V (x)

V (x)

]
ν(dy) ≤ −c5.

(3.1)

Then when f 6= 0 and limt→∞
Et
t = 0 a.s.,

lim sup
t→∞

1

t
log |X(t)| ≤ c2

p
a.s. (3.2)

and if c2 < 0, the trivial solution of (1.4) is almost surely exponentially path stable;
when f = 0 (i.e. no time drift in the SDE),

lim sup
t→∞

1

Et
log |X(t))| ≤ 1

p

(
c3 −

1

2
c4 − c5

)
a.s., (3.3)

and if c3 <
1
2c4 + c5, the trivial solution of (1.4) is almost surely path stable.

Proof : Define Z(t) = log |V (X(t))| and apply time-changed Itô formula (2.12) to
it, then for all t ≥ t0,

log |V (X(t))| = log |V (x0)|

+

∫ t

t0

∂xV (X(s−))

V (X(s−))
f(s, Es, X(s−))ds+

∫ t

t0

∂xV (X(s−))

V (X(s−))
k(s, Es, X(s−))

+
1

2

∂2xV (X(s−))g2(s, Es, X(s−))

V (X(s−))
− 1

2

(∂xV (X(s−))g(s, Es, X(s−)))2

V (X(s−))2

+

∫
|y|<c

[
log(V (X(s−) + h(s, Es, X(s−), y)))− log(V (X(s−))

− ∂xV (X(s−))

V (X(s−))
h(s, Es, X(s−), y)

]
ν(dy)dEs

+

∫ t

t0

∫
|y|<c

[
log(V (X(s−) + h(s, Es, X(s−), y)))− log(V (X(s−))

]
Ñ(dEs, dy)

+

∫ t

t0

∂xV (X(s−))

V (X(s−))
g(s, Es, X(s−))dBEs

= log |V (x0)|+
∫ t

t0

∂xV (X(s−))f(s, Es, X(s−))

V (X(s−))
ds

+

∫ t

t0

∂xV (X(s−))k(s, Es, X(s−))

V (X(s−))
+
∂2xV (X(s−)g2(s, Es, X(s−)))

2V (X(s−))

+

∫
|y|<c

[V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))
− 1

− ∂xV (X(s−))

V (X(s−))
h(s, Es, X(s−), y)

]
ν(dy)dEs
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+

∫ t

t0

∫
|y|<c

[
log(V (X(s−) + h(s, Es, X(s−), y)))− log(V (X(s−))

− ∂xV (X(s−))

V (X(s−))
h(s, Es, X(s−), y)

]
ν(dy)dEs

−
∫ t

t0

∫
|y|<c

[V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))
− 1

− ∂xV (X(s−))

V (X(s−))
h(s, Es, X(s−), y)

]
ν(dy)dEs

−
∫ t

t0

1

2

(∂xV (X(s−))g(s, Es, X(s−)))2

V (X(s−))2
dEs

+

∫ t

t0

∫
|y|<c

[
log(V (X(s−) + h(s, Es, X(s−), y)))− log(V (X(s−))

]
Ñ(dEs, dy)

+

∫ t

t0

∂xV (X(s−))

V (X(s−))
g(s, Es, X(s−))dBEs

= log |V (x0)|+
∫ t

t0

L1V (X(s−))

V (X(s−))
ds+

∫ t

t0

L2V (X(s−))

V (X(s−))
dEs

+

∫ t

t0

∂xV (X(s−))

V (X(s−))
g(s, Es, X(s−))dBEs

− 1

2

∫ t

t0

(∂xV (X(s−))g(s, Es, X(s−)))2

V (X(s−))2
dEs

+

∫ t

t0

∫
|y|<c

[
log
(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)]
Ñ(dEs, dy) + I2(t),

where

I2(t) =

∫ t

t0

∫
|y|<c

[
log
(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)
− V (X(s−) + h(s, Es, X(s−), y))− V (X(s−))

V (X(s−))

]
ν(dy)dEs.

(3.4)

Define

M(t) =

∫ t

t0

∂xV (X(s−))

V (X(s−))
g(s, Es, X(s−))dBEs

+

∫ t

t0

∫
|y|<c

[
log
(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)]
Ñ(dEs, dy),

(3.5)

then, applying conditions (ii) and (iii),

log |V (X(t))| ≤ log |V (x0)|+ c2(t− t0) + c3(Et − Et0) +M(t) + I2(t)

− 1

2

∫ t

t0

(∂V (X(s−))g(s, Es, X(s−)))2

V (X(s−))2
dEs.

(3.6)
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By exponential martingale inequality (2.27), for T = n, λ = ε, κ = εn where
ε ∈ (0, 1) and n ∈ N. Then for every integer n ≥ t0, we find that

P
[

sup
t0≤t≤n

{
M(t)− ε

2

∫ t

t0

(∂V (X(s−))g(s, Es, X(s−)))2

V (X(s−))2
dEs

− 1

ε

∫ t

t0

∫
|y|<c

[(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)ε
− 1

− ε log
(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)]
ν(dy)dEs

}
> εn

]
≤ exp(−ε2n)

(3.7)
Since

∑∞
n=1 exp(−ε2n) <∞, by Borel-Cantelli Lemma , we have

P
[

lim sup
n→∞

1

n

[
sup

t0≤t≤n

{
M(t)− ε

2

∫ t

t0

(∂V (X(s−))g(s, Es, X(s−)))2

V (X(s−))2
dEs

− 1

ε

∫ t

t0

∫
|y|<c

[(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)ε
− 1

− ε log
(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)]
ν(dy)dEs

}]
≤ ε
]

= 1

(3.8)

Hence for almost all w ∈ Ω there exists an integer N such that for all n ≥ N ,
t0 ≤ t ≤ n,

M(t) ≤ ε
2

∫ t

t0

(∂V (X(s−))g(s, Es, X(s−)))2

V (X(s−))2
dEs + εn

+
1

ε

∫ t

t0

∫
|y|<c

[(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)ε
− 1

+ ε log
(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)]
ν(dy)dEs

(3.9)

Thus,

log |V (X(t))| ≤ log |V (x0)|+ c2(t− t0) + c3(Et − Et0) + I2(t)

− 1

2

∫ t

t0

(∂V (X(s−))g(s, Es, X(s−)))2

V (X(s−))2
dEs

+
ε

2

∫ t

t0

(∂V (X(s−))g(s, Es, X(s−)))2

V (X(s−))2
dEs + εn

+
1

ε

∫ t

t0

∫
|y|<c

[(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)ε
− 1

+ ε log
(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)]
ν(dy)dEs

≤ log |V (x0)|+ c2(t− t0) + c3(Et − Et0) + I2(t)− 1− ε
2

c4(Et − Et0) + εn

+
1

ε

∫ t

t0

∫
|y|<c

[(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)ε
− 1

+ ε log
(V (X(s−) + h(s, Es, X(s−), y))

V (X(s−))

)]
ν(dy)dEs
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for n ≥ N, t0 ≤ t ≤ n.
Letting ε→ 0, we have

log |V (X(t))| ≤ log |V (x0)|+c2(t−t0)+c3(Et−Et0)− 1

2
c4(Et−Et0)+I2(t) (3.10)

The details can be found in Theorem 3.4.8 in Siakalli (2009) with certain simple
modifications. By condition (v), I2(t) ≤ −c5(Et−Et0), thus applying condition (i)

log |X(t)| ≤ 1

p
log |V (X(t))

c1
|

≤ 1

p

[
log |V (x0)| − log(c1) + c2(t− t0) + (c3 −

1

2
c4 − c5)(Et − Et0)

]
.

(3.11)

When f 6= 0, then c2 6= 0, thus, for almost all w ∈ Ω, n− 1 ≤ t ≤ n, n ≥ N ,

1

t
log |X(t)| ≤ 1

p

[ log |V (x0)| − log(c1)

t
+
c2(t− t0)

t
+

(c3 − 1
2c4 − c5)(Et − Et0)

t

]
,

(3.12)
then by Lemma 2.11

lim sup
t→∞

1

t
log |X(t)| ≤ c2

p
a.s. (3.13)

When f = 0, then c2 = 0, thus

log |X(t)| ≤ 1

p
log |V (X(t))

c1
|

≤ 1

p

[
log |V (x0)| − log(c1) + c3(Et − Et0)− 1

2
c4(Et − Et0)− c5(Et − Et0)

]
,

(3.14)

consequently,

lim sup
t→∞

1

Et
log |X(t)| ≤ 1

p

(
c3 −

1

2
c4 − c5

)
a.s. (3.15)

�

Remark 3.2. From the proof of the previous theorem, when f = 0, we can deduce
the following. When limt→∞

Et
t = 0 a.s., the following estimation is also true.

lim sup
t→∞

1

t
log |X(t)| ≤ 0 a.s. (3.16)

Remark 3.3. Path stability provides more information about how the dynamic
system becomes stable than moment stability, sufficient conditions for path stability
in Theorem 3.1 allow us better estimating how time-changed SDE (1.4) becomes
stable. Moreover, Theorem 3.1 shows the impact of changed time Et component
on the stability of SDE (1.4) with and without the drift ”dt” term.

Example 3.4. Consider the following stochastic differential equation

dX(t) = −X(t−)
3
2 dEt +X(t−)dBEt +

∫
|y|≤1

X(t−)y2Ñ(dEt, dy), (3.17)

with X(0) = 1, and an infinite Lévy measure ν where ν(x)(dx) = |x|− 3
2 dx for all

x ∈ R.
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Choose the Lyapunov function as V (x) = x
3
2 which satisfies the conditions (i)

and (ii) in Theorem 3.1. Furthermore,

L2V (x) = −3

2
x2 +

3

8
x

3
2 +

[ ∫
|y|≤1

[
(1 + y2)

3
2 − 1− 3

2
y2
]
ν(dy)

]
x

3
2

= x
3
2

[
− 3

2
x

1
2 +

3

8
+

∫
|y|≤1

[
(1 + y2)

3
2 − 1− 3

2
y2
]
ν(dy)

]
≤ x 3

2

[3

8
+

∫
|y|≤1

[(1 + y2)
3
2 − 1− 3

2
y2]ν(dy)

]
< .575V (x).

(3.18)

The last inequality is derived through numerical computation,
∫
|y|≤1[(1+y2)

3
2 −

1− 3
2y

2]ν(dy) =
∫
|y|≤1[(1 + y2)

3
2 − 1− 3

2y
2]|y|− 3

2 dy ≈ .1962.

In addition, |Vx(x)g(x)2| = | 32x
1
2x|2 = 9

4V (x)2 and by numerical computation∫
|y|≤1

[
log
( (x+ xy2)

x

) 3
2 − (x+ xy2)

3
2 − x 3

2

x
3
2

]
ν(dy)

=

∫
|y|≤1

[3

2
log(1 + y2)− (1 + y2)

3
2 + 1

]
|y|− 3

2 dy ≈ −.5051.

(3.19)

The constants of Theorem 3.1 are p = 1.5, c3 = .575, c4 = 2.25, c5 = .51,

then 1
p

(
c3 − 1

2c4 − c5
)
< −.7 < 0, thus the trivial solution of stochastic differential

equation (3.17) is almost surely path stable.

Theorem 3.1 also applies to finite Lévy measure case, for example, uniform dis-
tribution on [0, 1] as below.

Example 3.5. Consider the following stochastic differential equation

dX(t) = −X(t−)
3
2 dEt +X(t−)dBEt +

∫
|y|≤1

X(t−)y2Ñ(dEt, dy), (3.20)

with X(0) = 1, ν is uniform distribution [0, 1].

Choose the Lyapunov function as V (x) = x
3
2 which satisfies the conditions (i)

and (ii) in Theorem 3.1. Furthermore,

L2V (x) = −3

2
x2 +

3

8
x

3
2 +

[ ∫
|y|≤1

[
(1 + y2)

3
2 − 1− 3

2
y2
]
ν(dy)

]
x

3
2

= x
3
2

[
− 3

2
x

1
2 +

3

8
+

∫
|y|≤1

[
(1 + y2)

3
2 − 1− 3

2
y2
]
ν(dy)

]
≤ x 3

2

[3

8
+

∫
|y|≤1

[(1 + y2)
3
2 − 1− 3

2
y2]ν(dy)

]
≤ V (x).

(3.21)

The last inequality is derived by the following argument, Let f(y) = (1 + y2)
3
2 −

1− 3
2y

2, then f ′(y) > 0 for 0 ≤ y ≤ 1 and f ′(y) < 0 for −1 ≤ y ≤ 0. Thus f(y) ≤
f(1) = f(−1) = .33, for −1 ≤ y ≤ 1. Since ν is assumed to be uniform distribution

on [0, 1],
∫
|y|≤1[(1+y2)

3
2 −1− 3

2y
2]ν(dy) =

∫
|y|≤1 f(y)ν(dy) ≤ .33

∫
|y|≤1 ν(dy) < .33.

Thus, x
3
2

[
3
8 +

∫
|y|≤1[(1 + y2)

3
2 − 1− 3

2y
2]ν(dy)

]
≤ x 3

2 [ 38 + .33] ≤ x 3
2 = V (x).
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Figure 3.3. log(X(t))/Et of SDE (3.20)

In addition, |Vx(x)g(x)2| = | 32x
1
2x|2 = 9

4V (x)2 and∫
|y|≤1

[
log
( (x+ xy2)

x

) 3
2 − (x+ xy2)

3
2 − x 3

2

x
3
2

]
ν(dy)

=

∫
|y|≤1

[3

2
log(1 + y2)− (1 + y2)

3
2 + 1

]
ν(dy) < −.018.

(3.22)

Similar as above, the last inequality can be proved as following. Let f(y) = 3
2 log(1+

y2) − (1 + y2)
3
2 + 1, then f ′(y) < 0 for 0 ≤ y ≤ 1 and f ′(y) > 0 for −1 ≤ y ≤ 0.

Thus ∫
|y|≤1

[3

2
log(1 + y2)− (1 + y2)

3
2 + 1

]
ν(dy) =

∫
|y|≤1

f(y)ν(dy)

≤
∫
.5≤|y|≤1

f(y)ν(dy) = 2

∫
.5≤y≤1

f(y)ν(dy) ≤ 2

∫
.5≤y≤1

f(.5)ν(dy)

<2

∫
.5≤y≤1

−.062ν(dy) = −.124

∫
.5≤y≤1

ν(dy) = −.124[Φ(1)− Φ(.5)]

=− .124(.8413− .6915) < −.018

(3.23)

The constants of Theorem 3.1 are c3 = 1, c4 = 2.25, c5 = .018, then 1
2× 3

2

(
c3 −

1
2c4− c5

)
= −.0477 < 0, thus the trivial solution of stochastic differential equation

(3.20) is almost surely path stable. A simulation of a path of SDE in equation

(3.20) is given in Figure 3.3, it can be observed that log(X(t))
Et

is strictly below 0
when t is large, which illustrates our analysis above.

Remark 3.6. Note that f(x) = x
3
2 fails to be a Lipschitz function and does not

have linear growth condition. However, existence of unique solution to (3.20) is
guaranteed by Theorem 3.5 on page 58 of Mao (2008). It also should be noticed that
the Lipchitz condition 2.1 and growth condition 2.2 do not contribute to the proof
of Theorem 3.1 except guaranteeing the existence and uniqueness of the solution
to time-changed SDE (1.4).
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Remark 3.7. In the figures of all examples, we assume that E(t) is the inverse of
stable subordinator with parameter α = .8.

3.2. Stochastic Differential Equation (1.5) driven by Time-Changed Lévy Noise in-
cluding Large Jumps.

First, let us discuss exponential stability of the following time-changed SDE with
noise that has only small linear jump

dX(t) = f(t, Et, X(t−))dt+ k(t, Et, X(t−))dEt + g(t, Et, X(t−))dBEt

+

∫
|y|<c

h(y)X(t−)Ñ(dEt, dy),
(3.24)

with X(t0) = x0, which is a special case of (1.4) when h(t1, t2, x, y) = h(y)x. Then
we extend (3.24) to (1.5) by adding large jumps

∫
|y|≥cH(y)X(t−)N(dEt, dy) .

Assumption 3.8.

Zc =

∫
|y|<c

(|h(y)|
∨
|h(y)|2)ν(dy) <∞. (3.25)

Theorem 3.9. Given Assumptions 2.7 and 3.8, suppose that there exist ξ > 0, γ ≥
0, δ ≥ 0,K1,K2 ∈ R such that the following conditions

(1)γ|x|2 ≤ |g(t1, t2, x)|2 ≤ ξ|x|2, (2)

∫
|y|<c

h(y)ν(dy) ≥ δ

(3)f(t1, t2, x)x ≤ K1|x|2, (4)k(t1, t2, x)x ≤ K2|x|2
(3.26)

are satisfied for all x ∈ R and t1, t2 ∈ R+. Then when f 6= 0 and limt→∞
Et
t = 0

a.s., we have

lim sup
t→∞

1

t
log |X(t)| ≤ K1 a.s. (3.27)

for any x0 6= 0, the trivial solution of (3.24) is almost surely exponential path stable
if K1 < 0; when f = 0, we have

lim sup
t→∞

1

Et
log |X(t)| ≤ −

(
γ−K2−

ξ

2
−
∫
|y|<c

log(1+ |h(y)|)ν(dy)+δ
)
a.s. (3.28)

for any x0 6= 0, the trivial solution of (3.24) is almost surely path stable if γ >

K2 + ξ
2 +

∫
|y|<c log(1 + |h(y)|)ν(dy)− δ.

Proof of Theorem 3.9: Fix x0 6= 0, then by Itô formula for time-changed SDE, see
Lemma 3.1 in Nane and Ni (2017), we have

log(|X(t)|2) = log(|x0|2) +

∫ t

t0

L1 log(|X(s−)|2)ds+

∫ t

t0

L2 log(|X(s−)|2)dEs

+

∫ t

t0

∫
|y|<c

[
log(|X(s−) +X(s−)h(s, Es, y)|2)− log(|X(s−)|2)

]
Ñ(dEs, dy)

+

∫ t

t0

∫
|y|<c

d

dx
log(|X(s−)|2)g(s, Es, X(s−))dBEs ,

(3.29)
where

L1 log(|X(s−)|2) =
2X(s−)

|X(s−)|2
f(s, Es, X(s−)) ≤ 2K1, (3.30)
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L2 log(|X(s−)|2)dEs =
2X(s−)

|X(s−)|2
k(s, Es, X(s−))− |g(s, Es, X(s−))|2

|X(s−)|2

+

∫
|y|<c

[
log(|X(s−) + h(y)X(s−)|2)− log(|X(s−)|2)− 2h(y)

]
ν(dy).

(3.31)

Applying condition (2) and Assumption 3.8 to (3.31),∫ t

t0

L2 log(|X(s−)|2)dEs

=

∫ t

t0

[ 2X(s−)

|X(s−)|2
k(s, Es, X(s−))− |g(s, Es, X(s−))|2

|X(s−)|2
]
dEs

+

∫ t

t0

[ ∫
|y|<c

[
log(|X(s−) + h(y)X(s−)|2)− log(|X(s−)|2)− 2h(y)

]
ν(dy)

]
dEs

≤
∫ t

t0

[2K2|X(s−)|2

|X(s−)|2

+ (ξ − 2γ)
]
dEs +

∫ t

t0

[ ∫
|y|<c

[
log((1 + |h(y)|)2)

]
ν(dy)− 2δ

]
dEs

≤
∫ t

t0

2K2dEs + 2(Et − Et0)

∫
|y|<c

[
log((1 + |h(y)|))

]
ν(dy)

− (2γ + 2δ − ξ)(Et − Et0)

≤ (Et − Et0)
[
2

∫
|y|<c

log(1 + |h(y)|)ν(dy) + 2K2 + ξ − 2γ − 2δ
]
.

(3.32)
Note that both

M1(t) =

∫ t

t0

d

dx
log(|X(s−)|2)g(s, Es, X(s−))dBEs (3.33)

and

M2(t) =

∫ t

t0

∫
|y|<c

[
log(|X(s−)+X(s−)h(y)|2)−log(|X(s−)|2)

]
Ñ(dEs, dy) (3.34)

are martingales.
Now,

log(|X(t)|2) ≤ log(|x0|2) + 2K1(t− t0) +M1(t) +M2(t)

+ (Et − Et0)
(

2

∫
|y|<c

log(1 + |h(y)|)ν(dy) + 2K2 + ξ − 2γ − 2δ
)
.

(3.35)
By Theorem 10.17 in Jacod (1979), 〈B ◦ E〉(t) = 〈B〉 ◦ E(t) = Et, this implies

that

〈M1〉(t) =

∫ t

t0

∣∣∣2X(s−)

X(s−)2
g(s, Es, X(s−))

∣∣∣2dEs
≤
∫ t

t0

4ξdEs = 4ξ(Et − Et0).

(3.36)



Stochastic differential equations driven by time-changed Lévy noises 499

Define ρM1(t) =
∫ t
t0

d〈M1〉(s)
(1+Es)2

, then

ρM1(t) ≤ 4ξ

∫ t

t0

dEs
(1 + Es)2

= 4ξ

∫ Et

Et0

ds

(1 + s)2
=
−4ξ

1 + s

∣∣∣Et
Et0

= 4ξ
[ 1

1 + Et0
− 1

1 + Et

]
,

(3.37)
then

lim
t→∞

ρM1
(t) ≤ lim

t→∞
4ξ
[ 1

1 + Et0
− 1

1 + Et

]
) ≤ 4ξ <∞. (3.38)

By Theorem 10 of Chapter 2 in Liptser and Shiryayev (1989),

lim
t→∞

M1(t)

Et
= 0, a.s. (3.39)

Similarly,

〈M2〉(t) ≤
∫ t

t0

∫
|y|<c

∣∣2 log(1 + |h(y)|)
∣∣2ν(dy)dEs

≤
∫ t

t0

∫
|y|<c

4|h(y)|2ν(dy)dEs

≤
∫ t

t0

4ZcdEs ≤ 4Zc(Et − Et0),

(3.40)

so

lim
t→∞

ρM2(t) ≤ lim
t→∞

4Zc

∫ t

t0

dEs
(1 + Es)2

<∞ a.s. (3.41)

As a result,

lim
t→∞

M2(t)

Et
= 0, a.s. (3.42)

In the end, since

lim
t→∞

Et
t

= 0, a.s., (3.43)

and

log |X(t)|
t

≤ log |x0|
t

+
2K1(t− t0)

t

+
(Et − Et0)(

∫
|y|<c log(1 + |h(y)|)ν(dy) +K2 + ξ

2 − γ − δ)
t

+
M1(t)

2Et

Et
t

+
M2(t)

2Et

Et
t

(3.44)

thus,

lim sup
t→∞

log |X(t)|
t

≤ K1 a.s. (3.45)

When f = 0,

log |X(t)|
Et

≤ log |x0|
Et

+
(Et − Et0)(

∫
|y|<c log(1 + |h(y)|)ν(dy) +K2 + ξ

2 − γ − δ)
Et

+
M1(t)

2Et
+
M2(t)

2Et
,

(3.46)
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thus,

lim sup
t→∞

log |X(t)|
Et

≤
∫
|y|<c

log(1 + |h(y)|)ν(dy) +K2 +
ξ

2
− γ − δ a.s. (3.47)

�

Example 3.10. Consider the following stochastic differential equation

dX(t) = −sin(X(t−))X(t−)dEt +
X(t−)

Et + 1
dBEt +

∫
|y|≤1

16X(t−)y2Ñ(dEt, dy),

(3.48)

with X(0) = 1, and an infinite Lévy measure ν where ν(x) = |x|− 3
2 for all x ∈ R.

Applying Theorem 3.9, 0 ≤ |g(x, t1, t2)2| ≤ |x|2,
∫
|y|≤1 h(y)ν(dy) = 64

3 and

k(t1, t2, x)x ≤ |x|2, thus γ = 0, ξ = 1, δ = 64
3 , K2 = 1. In addition,

∫
|y|<1

log(1 +

|h(y)|)ν(dy) =
∫
|y|<1

log(1 + 16y2)|y|− 3
2 dy ≈ 8.404.

lim sup
t→∞

1

Et
log |X(t)| ≤ −

(
γ −K2 −

ξ

2
−
∫
|y|<1

log(1 + |h(y)|)ν(dy) + δ
)

≈ −(0− 1− 1

2
− 8.404 +

64

3
) < 0 a.s.

(3.49)

Hence, stochastic differential equation (3.48) is almost surely path stable.

Theorem 3.9 also applies to finite Lévy measure case, for example, uniform dis-
tribution on [0, 1] as below.

Example 3.11. Consider the following stochastic differential equation

dX(t) = −sin(X(t−))X(t−)dEt +
X(t−)

Et + 1
dBEt +

∫
|y|≤1

16X(t−)y2Ñ(dEt, dy),

(3.50)
with X(0) = 1, ν is uniform distribution [0, 1].

Applying Theorem 3.9, 0 ≤ |g(x, t1, t2)2| ≤ |x|2,
∫
|y|≤1 h(y)ν(dy) ≥ 16

3 and

k(t1, t2, x)x ≤ |x|2, thus γ = 0, ξ = 1, δ = 16
3 , K2 = 1.

lim sup
t→∞

1

Et
log |X(t)| ≤ −

(
γ −K2 −

ξ

2
−
∫
|y|<c

log(1 + |h(y)|)ν(dy) + δ
)

= −(0− 1− 1

2
− log(17) +

16

3
) < 0 a.s.

(3.51)

Hence, stochastic differential equation (3.50) is almost surely path stable. The

simulated path of SDE (3.50) is given in Figure 3.4. The ratio of log |X(t)|
Et

is strictly
below 0 for large time t, this is consistent with above analysis.

Next, we analyze the following time-changed stochastic differential equation in-
volving large jumps,

dX(t) =

∫
|y|≥c

H(y)X(t−)N(dEt, dy), (3.52)

with X(t0) = x0 ∈ R and H : R→ R is a measurable function.
Before stating the next theorem, we need another assumption, see Siakalli (2009).
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Figure 3.4. log(X(t))/Et of SDE (3.50)

Assumption 3.12. Assume that∫
|y|≥c

|H(y)|2ν(dy) <∞ (3.53)

and that H(y) 6= −1 for |y| ≥ c.

By above assumption, the function H(y)x satisfies Lipschitz and growth con-
ditions, assuring the existence and uniqueness of solution to equation (3.52). In
addition, H(y) 6= −1 implies that P (X(t) 6= 0 for all t ≥ t0) = 1, this is an
application of interlacing technique in Applebaum (2009), details can be found in
Lemma 4.3.2 in Siakalli (2009) with simple modification.

Theorem 3.13. If

sup
x∈R−0

∫
|y|≥c

[
log(|x+H(y)x|)− log(|x|)

]
ν(dy) < −K, (3.54)

for some K > 0, then the sample Lyapunov exponent of solution of (3.52) exists
and satisfies

lim sup
t→∞

1

Et
log |X(t)| ≤ −2K a.s., (3.55)

for any x0 6= 0, that is, the trivial solution of (3.52) is almost surely path stable.

Proof : Fix x0 6= 0, apply Itô formula (2.12) to log(|X(t)|2), then for any t ≥ 0,
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log(|X(t)|2)

= log(x20) +

∫ t

t0

∫
|y|≥c

[
log(|X(s) +H(y)X(s)|2)− log(|X(s)|2)

]
N(dEs, dy)

= log(x20) +

∫ t

t0

∫
|y|≥c

[
log(|X(s) +H(y)X(s)|2)− log(|X(s)|2)

]
Ñ(dEs, dy)

+

∫ t

t0

∫
|y|≥c

[
log(|X(s) +H(y)X(s)|2)− log(|X(s)|2)

]
ν(dy)dEs.

(3.56)

Let M3(t) =
∫ t
t0

∫
|y|≥c

[
log(|X(s)+H(y)X(s)|2)− log(|X(s)|2)

]
Ñ(dEs, dy), similar

ideas as in the proof of the corresponding inequality for M2(t) in the proof of
Theorem (3.9), we have

lim
t→∞

M3(t)

Et
= 0, a.s., (3.57)

thus

log(|X(t)|2)

Et
≤ log(x20)

Et

+
(Et − Et0) sup0≤s≤t

∫
|y|≥c

[
log(|X(s) +H(y)X(s)|2)− log(|X(s)|2)

]
ν(dy)

Et

→ sup
0≤s≤t

∫
|y|≥c

[
log(|X(s) +H(y)X(s)|2)− log(|X(s)|2)

]
ν(dy) ≤ −2K,

(3.58)
as t→∞. �

Next, by similar ideas as the proof of Theorem 4.6.1 in Siakalli (2009), it is not
difficult to derive the following theorem for the following time-changed SDE

dX(t) = f(t, Et, X(t−))dt+ k(t, Et, X(t−))dEt + g(t, Et, X(t−))dBEt

+

∫
|y|<c

h(y)X(t−)Ñ(dEt, dy) +

∫
|y|≥c

H(y)X(t−)N(dEt, dy)
(3.59)

with X(t0) = x0.

Theorem 3.14. Given assumptions 2.7, 3.8 and 3.12, suppose that there exist
ξ > 0, γ ≥ 0, δ ≥ 0,K1,K2 ∈ R such that the following conditions

(1)γ|x|2 ≤ |g(t1, t2, x)|2 ≤ ξ|x|2, (2)

∫
|y|<c

h(y)ν(dy) ≥ δ

(3)f(t1, t2, x)x ≤ K1|x|2, (4)k(t1, t2, x)x ≤ K2|x|2
(3.60)

are satisfied for all x ∈ R and t1, t2 ∈ R+. Then when f 6= 0and limt→∞
Et
t = 0

a.s., we have

lim sup
t→∞

1

t
log |X(t)| ≤ K1 a.s., (3.61)
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for any x0 6= 0, the trivial solution of (1.5) is almost surely exponentially path
stable if K1 < 0; when f = 0, we have

lim sup
t→∞

1

Et
log |x(t)| ≤ −

(
γ−K2−

ξ

2
−
∫
|y|<c

log(1 + |h(y)|)ν(dy) + δ−M(c)
)
a.s.,

(3.62)

where M(c) = supx∈R−{0}
∫
|y|≥c

[
log(|x + H(y)x|) − log(|x|)

]
ν(dy) < ∞, for any

x0 6= 0, and the trivial solution of (1.5) is almost surely path stable if γ > K2 +
ξ
2 +

∫
|y|<c log(1 + |h(y)|)ν(dy)− δ +M(c).

Proof : Application of Theorem 3.1 and Theorem 3.13. �

Remark 3.15. The Theorems 3.1 and 3.14 show that the coefficient of ”dt” (i.e. the
drift term) plays the dominating role in determining the almost sure exponential
path stabilities. In absence the of ”dt” part, almost sure path stability is the result
of the coefficients of the other components.

Next, we list some examples to illustrate the results of above theorems.

Example 3.16. Consider the following two stochastic differential equations

dX(t) = X(t−)dt+X(t−)dBEt +

∫ t

0

∫
|y|≤1

X(t−)y2Ñ(dEt, dy)

+

∫ t

0

∫
|y|>1

X(t−)y2N(dEt, dy)

(3.63)

with X(0) = .1 and ν is standard normal distribution, and

dX(t) = −X(t−)dt+X(t−)dBEt

+ 2

∫ t

0

∫
|y|≤1

X(t−)y2Ñ(dEt, dy) + 2

∫ t

0

∫
|y|>1

X(t−)y2N(dEt, dy)
(3.64)

with X(0) = .1 and ν is standard normal distribution.
Figure 3.5 illustrates that stochastic differential equation (3.63) is not almost

surely exponentially path stable, this is because ”dt” component exists in the linear
stochastic system, such component plays dominant role in determining almost sure
exponential path stability and has positive scalar 1, thus lim supt→∞

1
t log |x(t)| ≤

1, this is not enough for almost sure exponential path stability.
In contrast, as illustrated in the Figure 3.6, (also verified by Theorem 3.14)

stochastic differential equation (3.64) is almost surely exponentially stable. This is
because that coefficient for dt in (3.64) is -1, thus lim supt→∞

1
t log |x(t)| ≤ −1, this

implies almost sure exponential path stability.

Example 3.17. Consider the following two stochastic differential equations

dX(t) = −X(t−)dEt +X(t−)dBEt

+

∫ t

0

∫
|y|≤1

X(t−)y2Ñ(dEt, dy) +

∫ t

0

∫
|y|>1

X(t−)y2N(dEt, dy)
(3.65)

with X(0) = −3, and ν is standard normal distribution, and

dX(t) = −X(t−)dEt +X(t−)dBEt

+

∫ t

0

∫
|y|≤1

X(t−)y2Ñ(dEt, dy) +

∫ t

0

∫
|y|>1

X(t−)y2N(dEt, dy)
(3.66)
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Figure 3.5. log(X(t))/t of SDE (3.63)

Figure 3.6. log(X(t))/t of SDE (3.64)

with X(0) = −3 and ν is standard normal distribution. In both of the equations
(3.65) and (3.66), ”dt” component is missing, thus almost sure exponential path
stability is no longer possible. However, almost sure path stability is possible,
depending on the scalars of time-changed drift, Brownian motion, and Poisson
jump.

In stochastic differential equations (3.65), the corresponding parameters are
K2 = ξ = γ = 1, δ = .2, h(y) = H(y) = y2 and 0 ≤ δ ≤

∫
|y|<1

y2ν(dy) < 1,
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Figure 3.7. log(X(t))/Et of SDE (3.65)

Figure 3.8. log(X(t))/Et of SDE (3.66)

by Theorem 3.14

lim sup
t→∞

1

Et
log |X(t)|

< −
(

1− 1− 1

2
−
∫
|y|<1

log(1 + y2)ν(dy) + .2− sup
x∈Rd−0

∫
|y|<1

log(1 + y2)ν(dy)
)

≤
∫
|y|<1

log(1 + y2)ν(dy) + .3 a.s.,

(3.67)
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which is not enough to conclude the almost sure path stability of stochastic differ-
ential equations (3.65).

However, in stochastic differential equations (3.66) corresponding parameters are
K2 = 1, δ = .2, γ = ξ = 4, h(y) = H(y) = y2 and 0 ≤ δ ≤

∫
|y|<1

y2ν(dy) < 1, by

Theorem 3.14

lim sup
t→∞

1

Et
log |X(t)|

< −
(

4− 1− 2−
∫
|y|<1

log(1 + y2)ν(dy) + .2− sup
x∈Rd−0

∫
|y|<1

log(1 + y2)ν(dy)
)

≤ −.8 + 2

∫
|y|<1

log(1 + y2)ν(dy) ≤ −.8 + 2

∫
|y|<1

y2ν(dy) ≤ 0 a.s.,

(3.68)
thus the solution of stochastic differential equation (3.66) is almost surely path
stable.
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