Skip to main content
Log in

Silicon-based photocells of enhanced spectral sensitivity with nano-sized graded band gap structures

  • Direct Conversion of Solar Energy to Electric Energy
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

Photoelectric properties of monocrystalline silicon with multiply charged nanoclusters are studied that generate “silicon clusters,” i.e., nano-sized graded band gap structures. Multiply charged nanoclusters of manganese atoms strongly influence the photoelectric properties of monocrystalline silicon and expand the range of spectral sensitivity up to 8 μm; the photoelectric sensitivity reaches ∼109. Conditions occur for the emergence of photo-emf in such a material in the infrared region when hν< E g . The obtained experimental data expand the functional capabilities for the application of silicon with multiply charged impurity atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kwang-Hyuk Choia, Johoon Kimb, Young-Jin Nohc, et al., Ag nanowire-embedded ITO films as a nearinfrared transparent and flexible anode for flexible organic solar cells, Solar Energy Mater. Solar Cells, 2013, vol. 110, pp. 147–153.

    Article  Google Scholar 

  2. de Wild, J., Rath, J.K., Meijerink, A., et al., Enhanced near-infrared response of a-Si: H solar cells with β-NaYF4: Yb3+ (18%), Er3+ (2%) upconversion phosphors, Solar Energy Mater. Solar Cells, 2010, vol. 94, no. 12, pp. 2395–2398.

    Article  Google Scholar 

  3. Guenther, K.-M., Baumann, A.L., Gimpel, T., Kontermann, S., and Schade, W., Tandem solar cell concept using black silicon for enhanced infrared absorption, Proc. 2nd Int. Conf. on Crystalline Silicon Photovoltaics Silicon PV2012. Energy Procedia, 2012, vol. 27, pp. 555–560.

    Google Scholar 

  4. Abdurakhmanov, B.A., Ayupov, K.S., Bakhadyrkhanov, M.K., et al., Low-temperature diffusion of additions in silicon, Dokl. Uzb. Akad. Nauk, 2010, no. 4, pp. 32–36.

    Google Scholar 

  5. Askarov, Sh.I., Bakhadirkhanov, M.K., Masterov, V.F., and Shtel’makh, V.F., The way to research S and Mg inter-addition interaction in silicon by means of EPR method, Fiz. Tekh. Poluprovodn., 1982, vol. 16, no. 7, pp. 1308–1310.

    Google Scholar 

  6. Bakhadyrkhanov, M.K., Mavlonov, G.Kh., Isamov, S.B., et al., Transport properties of silicon doped with manganese via low-temperature diffusion, Inorg. Mater., 2011, vol. 47, no. 5, pp. 479.

    Article  Google Scholar 

  7. Bakhadyrkhanov, M.K., Ayupov, K.S., Mavlyanov, G.Kh., et al., Photoconductivity of silicon with magnesium atoms nanoclusters, Mikroelektronika, 2010, vol. 39, no. 6, pp. 426–429.

    Google Scholar 

  8. Mil’vidskii, M.G. and Chaldyshev, V.V., Nanosized atomic clusters in semiconductors: a new approach to form materials properties, Fiz. Tekh. Poluprovodn., 1998, vol. 32, no. 5, pp. 513–518.

    Google Scholar 

  9. Fistul’, V.I., Vvedenie v fiziku poluprovodnikov: Ucheb. posobie dlya VUZov (Introduction into Semiconductors Physics. Student’s Book for High School), Moscow: Vysshaya shkola, 1984.

    Google Scholar 

  10. Bakhadyrkhanov, M.K., Isamov, S.B., Zikrillaev, N.F., and Khaidarov, K., Nanosized variable structure in silicon with multiply charged nanoclusters, Mikroelektronika, 2013, vol. 42, no. 6, pp. 444–446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Bakhadyrkhanov.

Additional information

Original Russian Text © M.K. Bakhadyrkhanov, S.B. Isamov, Kh.M. Iliev, S.A. Tachilin, K.U. Kamalov, 2014, published in Geliotekhnika, 2014, No. 2, pp. 3–5.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhadyrkhanov, M.K., Isamov, S.B., Iliev, K.M. et al. Silicon-based photocells of enhanced spectral sensitivity with nano-sized graded band gap structures. Appl. Sol. Energy 50, 61–63 (2014). https://doi.org/10.3103/S0003701X14020054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X14020054

Keywords

Navigation