Skip to main content
Log in

The properties of co-seismic deformations of the ocean bottom as indicated by the slip-distribution data in tsunamigenic earthquake sources

  • Physics of Earth, Atmosphere, and Hydrosphere
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

In this study we consider 75 ocean-bottom earthquakes that occurred during the 1923–2013 period. Based on the slip-distribution data from the Finite-Source Rupture Model Database (SRCMOD) and Okada formulas, the vector fields of co-seismic bottom deformations were calculated. It is shown that, as a rule, the horizontal components of the sloping bottom deformation make an additional and essential contribution to the water displacement and the potential energy of the water-surface elevation that is similar in shape to the bottom surface displacement (the tsunami energy). On the basis of the analyzed relationships between the bottom deformation amplitude, the displaced water volume, tsunami energy, and the earthquake moment magnitude the corresponding regression dependencies were constructed. It is shown that the fraction of the potential energy of an earthquake that is converted into a tsunami increases with the increasing moment magnitude, but even during catastrophic earthquakes it is less than 0.1% of the total earthquake energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Alewine and T. H. Jordan, “Generalized inversion of earthquake static displacement fields,” Geophys. J. Royal Astron. Soc. 35, 357–380 (1973).

    Google Scholar 

  2. D. B. Jovanovich, “An inversion method for estimating the source parameters of seismic and aseismic events from static strain data,” Geophys. J. Astron. Soc. 43, 347–365 (1975).

    Article  ADS  Google Scholar 

  3. V. M. Pavlov and A. A. Gusev, “On possibility of motion restoring in the deep earthquake source according to bulk wave field in Fraunhofer region,” Dokl. Akad. Nauk, 255, 828–834 (1980).

    MathSciNet  Google Scholar 

  4. S. N. Ward and S. E. Barrientos, “An inversion for slip distribution and fault shape from geodetic observations of the 1983 Borah Peak, Idaho Earthquake,” J. Geophys. Res. 91, 4909–4919 (1986), DOI:10.1029/JB091iB05p04909.

    Article  ADS  Google Scholar 

  5. C. Ji, D. J. Wald, and D. V. Helmberger, “Source description of the 1999 Hector Mine, California, earthquake; Part I: Wavelet domain inversion theory and resolution analysis,” Bull. Seism. Soc. Am. 92, 1192–1207 (2002).

    Article  Google Scholar 

  6. C. Bassin, G. Laske, and G. Masters, Bassin, “The ñurrent limits of resolution for surface wave tomography in North America.”? EOS, Trans. Am. Geophys. Un. 81, F897 (2000).

    Google Scholar 

  7. T. Lay, Y. Yamazaki, C. J. Ammon, K. F. Cheung, and H. Kanamori, “The 2011 M(w) 9.0 off the Pacific coast of Tohoku Earthquake: Comparison of deep-water tsunami signals with finite-fault rupture model predictions,” Earth Planets Space 63, 797–801 (2011).

    Article  ADS  Google Scholar 

  8. G. Shao, X. Li, C. Ji, and T. Maeda, “Focal mechanism and slip history of 2011 Mw 9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves,” Earth Planets Space 63, 559–564 (2011).

    Article  ADS  Google Scholar 

  9. Y. Yagi and Y. Fukahata, “Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes,” Geophysical J. Int. 186, 711–720 (2011).

    Article  ADS  Google Scholar 

  10. B. W. Levin and M. Nosov, Physics of Tsunamis (Dordrecht, 2009).

    Google Scholar 

  11. M. A. Nosov, “Tsunami waves of seismic origin: The modern state of knowledge,” Izv. Ross. Akad. Nauk. Fiz. Atmos. Okeana 50, 474–484 (2014).

    Google Scholar 

  12. N. P. Laverov, L. I. Lobkovsky, A. B. Rabinovich, E. A. Kulikov, B. W. Levin, I. V. Fine, and R. E. Thomson, “The Kuril tsumanis of November 15, 2006, and January 13, 2007: Two trans-Pacific events,” Dokl. Earth Sci. 426, 658–664 (2009).

    Article  ADS  Google Scholar 

  13. M. A. Nosov, S. V. Kolesov, and B. W. Levin, “Contribution of horizontal deformation of the seafloor into tsunami generation near the coast of Japan on March 11, 2011,” Dokl. Earth Sci. 441, no. 1, 1537–1542 (2011).

    Article  Google Scholar 

  14. A. V. Newman, G. Hayes, Y. Wei, and J. Convers, “The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation,” Geophys. Res. Lett. 38, L05302 (2011). DOI:10.1029/2010GL046498.

    Article  ADS  Google Scholar 

  15. C. Poisson, R. Oliveros, and R. Pedreros, “Is there a best source model of the Sumatra 2004 earthquake for simulating the consecutive tsunami?” Geophys. J. Int. 185, 1365–1378 (2011).

    Article  ADS  Google Scholar 

  16. D. C. Kim, K. O. Kim, E. N. Pelinovsky, I. Didenkulova, and B. H. Choi, “Three-dimensional tsunami runup simulation for the port Koborinai on the Sanriku coast of Japan,” J. Coastal Res., Spec. Issue, No. 65, 266–271 (2013).

    Google Scholar 

  17. M. A. Nosov, A. V. Bolshakova and S. V. Kolesov, “Displaced water volume, potential energy of initial elevation, and tsunami intensity: Analysis of recent tsunami events,” Pure Applied Geophys. 171, 3515–3525 (2014). DOI: 10:1007/s00024-013-0730-6.

    Article  ADS  Google Scholar 

  18. A. V. Bolshakova and M. A. Nosov, “Parameters of tsunami source versus earthquake magnitude,” Pure Applied Geophys. 168, 2023–2031 (2011). DOI:10:1007/s00024-011-0285-3.

    Article  ADS  Google Scholar 

  19. Y. Tanioka and K. Satake, “Tsunami generation by horizontal displacement of ocean bottom,” Geophys. Res. Lett. 23, 861–864 (1996).

    Article  ADS  Google Scholar 

  20. Y. Okada, “Surface deformation due to shear and tensile faults in a half-space,” Bull. Seismol. Soc. Am. 75, 1135–1154 (1985).

    Google Scholar 

  21. M. A. Nosov and S. V. Kolesov, “Method of specification of the initial conditions for numerical tsunami modeling,” Mos. Univ. Phys. Bull. 64, 208–213 (2009). DOI: 10.3103/S0027134909020222

    Article  ADS  MATH  Google Scholar 

  22. M. A. Nosov and S. V. Kolesov, “Optimal initial conditions for simulation of seismotectonic tsunamis,” Pure Appl. Geophys. 168, 1223–1237 (2011). DOI: 10.1007/s00024-010-0226-6.

    Article  ADS  Google Scholar 

  23. A. V. Bernadskii and M. A. Nosov, “The role of bottom friction in models of nonbreaking tsunami wave runup on the shore,” Izv. Atmosph. Oceanic. Phys. 48, 427–431 (2012). DOI: 10.1134/S0001433812040032.

    Article  ADS  Google Scholar 

  24. H. Kanamori and D. L. Anderson, “Theoretical basis of some empirical relations in seismology,” Bull. Seismol. Soc. Am. 65, 1073–1095 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bolshakova.

Additional information

Original Russian Text © A.V. Bolshakova, M.A. Nosov, S.V. Kolesov, 2015, published in Vestnik Moskovskogo Universiteta. Fizika, 2015, No. 1, pp. 61–65.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolshakova, A.V., Nosov, M.A. & Kolesov, S.V. The properties of co-seismic deformations of the ocean bottom as indicated by the slip-distribution data in tsunamigenic earthquake sources. Moscow Univ. Phys. 70, 62–67 (2015). https://doi.org/10.3103/S0027134915010038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134915010038

Keywords

Navigation