Skip to main content
Log in

Numerical tsunami modeling and the bottom relief

  • Physics of Earth, Atmosphere, and Hydrosphere (Review)
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The effect of the quality of bathymetric data on the accuracy of tsunami-wave field calculation is considered. A review of the history of the numerical tsunami modeling development is presented. Particular emphasis is made on the World Ocean bottom models. It is shown that the modern digital bathymetry maps, for example, GEBCO, do not adequately simulate the sea bottom in numerical models of wave propagation, leading to considerable errors in estimating the maximum tsunami run-ups on the coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Rabinovich and M. C. Eblé, Pure Appl. Geophys. 175, 3281 (2015). doi 10.1007/s00024-015-1058-1

    Article  ADS  Google Scholar 

  2. F. González, E. Geist, B. Jaffe, U. Kânoglu, et al., J. Geophys. Res. 114, C11023 (2009).

    Article  ADS  Google Scholar 

  3. B. Le Méhauté, An Introduction to Hydrodynamics and Water Waves (Springer, 1976).

    Book  MATH  Google Scholar 

  4. B. W. Levin and M. A. Nosov, Physics of Tsunamis, 2nd ed. (Springer, 2016).

    Book  Google Scholar 

  5. N. Shuto, in Tsunami Hazard. A Practical Guide for Tsunami Hazard Reduction, Ed. by E. N. Bernard (Springer, 1991), p. 171.

  6. F. Imamura, in Long-Wave Runup Models, Ed. by H. Yeh, P. Liu, and C. Synolakis (World Sci., 1995), p. 43.

  7. I. Isozaki and S. Unoki, in Studies on Oceanography: A Collection of Papers Dedicated to Koji Hidaka (Tokyo Univ. Press, 1964), p. 389.

    Google Scholar 

  8. T. Ueno, Oceanogr. Mag. 17, 87 (1965).

    Google Scholar 

  9. I. Aida, Bull. Earthquake Res. Inst. 47, 673 (1969).

    Google Scholar 

  10. A. Mogi, B. Kawamura, and Y. Iwabuchi, J. Geod. Soc. Jpn. 10, 180 (1964).

    Google Scholar 

  11. T. Hatori, Bull. Earthquake Res. Inst. 43, 129 (1965).

    Google Scholar 

  12. R. Takahasi and T. Hatori, Bull. Earthquake Res. Inst. 40, 873 (1962).

    Google Scholar 

  13. L.-S. Hwang and D. Divoky, J. Geophys. Res. 75, 6802 (1970).

    Article  ADS  Google Scholar 

  14. L.-S. Hwang, H. Buttler, and D. Divoky, Rat Island Tsunami Model: Generation and Open-Sea Characteristics (U.S. Atomic Energy Commission, 1971).

    Google Scholar 

  15. A. S. Alekseev, V. K. Gusiakov, L. B. Chubarov, and Yu. I. Shokin, in The Study of Tsunamis in the Open Ocean (Nauka, Moscow, 1978), p. 5.

    Google Scholar 

  16. V. K. Gusiakov and L. B. Chubarov, in The Evolution of Tsunamis from the Source to the Shore (Radio i Svyaz’, Moscow, 1982), p. 16.

    Google Scholar 

  17. L. B. Chubarov, Yu. I. Shokin, and V. K. Guisakov, Comput. Fluids 12 (2), 123 (1984).

    Article  Google Scholar 

  18. P. L.-F. Liu, C. E. Synolakis, and H. H. Yeh, J. Fluid Mech. 229, 675 (1991).

    Article  ADS  Google Scholar 

  19. Long-Wave Runup Models, Ed. by H. Yeh, P. Liu, and C. Synolakis (World Sci., 1995).

  20. A. Dziewonski, T. Chou, and J. Woodhouse, J. Geophys. Res 86, 2825 (1981).

    Article  ADS  Google Scholar 

  21. G. Ekström and M. Nettles, Phys. Earth Planet. Inter. 101, 219 (1997).

    Article  ADS  Google Scholar 

  22. I. Aida, J. Phys. Earth 26, 57 (1978).

    Article  Google Scholar 

  23. L. Mansinha and D. Smylie, Bull. Seismol. Soc. Am. 61, 1433 (1971).

    Google Scholar 

  24. Y. Okada, Bull. Seismol. Soc. Am. 75, 1135 (1985).

    Google Scholar 

  25. M. Chinnery, Bull. Seismol. Soc. Am. 51, 355 (1961).

    Google Scholar 

  26. T. Maruyama, Bull. Earthquake Res. Inst. 42, 289 (1964).

    Google Scholar 

  27. F. Press, J. Geophys. Res. 70, 2395 (1965).

    Article  ADS  Google Scholar 

  28. J. Savage and L. Hastie, J. Geophys. Res. 71, 4897 (1966).

    Article  ADS  Google Scholar 

  29. R. Sato and M. Matsuura, J. Phys. Earth 22, 213 (1974).

    Article  Google Scholar 

  30. V. K. Gusiakov, in Conditionally Correct Problems of Mathematical Physics in the Interpretation of Geophysical Observations (Vychisl. Tsentr Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1978), p. 23.

    Google Scholar 

  31. C. Ji, D. J. Wald, and D. V. Helmberger, Bull. Seismol. Soc. Am. 92, 1192 (2002).

    Article  Google Scholar 

  32. C. E. Synolakis and E. N. Bernard, Philos. Trans. R. Soc., A 364, 2231 (2006). doi 10.1098/rsta.2006.1824

    Article  ADS  Google Scholar 

  33. M. A. Nosov, Izv., Atmos. Ocean. Phys. 50, 474 (2014).

    Article  Google Scholar 

  34. A. V. Bolshakova and M. A. Nosov, Pure Appl. Geophys. 168, 2023 (2011).

    Article  ADS  Google Scholar 

  35. M. A. Nosov, A. V. Bolshakova, and S. V. Kolesov, Pure Appl. Geophys. 171, 3515 (2014).

    Article  ADS  Google Scholar 

  36. A. V. Bolshakova, M. A. Nosov, and S. V. Kolesov, Moscow Univ. Phys. Bull. 70, 62 (2015).

    Article  ADS  Google Scholar 

  37. F. Gonzalez, E. N. Ernard, C. Meinig, M. Eble, et al., Nat. Hazards 35, 25 (2005).

    Article  Google Scholar 

  38. V. V. Titov, F. I. Gonzalez, E. N. Bernard, M. C. Eble, et al., Nat. Hazards 35, 41 (2005).

    Article  Google Scholar 

  39. Y. Wei, E. N. Bernard, L. Tang, R. Weiss, et al., Geophys. Res. Lett. 35, L04609 (2008).

    ADS  Google Scholar 

  40. V. V. Titov, in The Sea, Vol. 15: Tsunamis, Ed. by E. N. Bernard and A. R. Robinson (Harvard Univ. Press, 2009), p. 371.

  41. NOAA National Centers for Environmental Information, ETOPO5 5-minute gridded elevation data. http://www.ngdc.noaa.gov/mgg/global/etopo5.HTML.

  42. M. T. Jones, A. R. Tabor, and P. Weatherall, GEBCO Digital Atlas: CD-ROM and Supporting Volume (British Oceanographic Data Center, Birkenhead, 1994).

    Google Scholar 

  43. W. H. F. Smith and D. Sandwell, Science 227, 1956 (1997).

    Article  Google Scholar 

  44. General Bathymetric Chart of the Oceans, GEBCO one minute grid. http://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_one_minute_grid.

  45. British Oceanographic Data Centre, The GEBCO_ 2014 grid. http://www.bodc.ac.uk/data/documents/nodb/301801/.

  46. C. Amante and B. W. Eakins, ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis (National Geophysical Data Center, Boulder, 2009). http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/docs/ETOPO1.pdf.

    Google Scholar 

  47. M. Jakobsson, L. Mayer, B. Coakley, et al., Geophys. Res. Lett. 39, L12609 (2012). http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/2012GL052219.pdf.

    ADS  Google Scholar 

  48. NOAA National Centers for Environmental Information, U.S. coastal relief model. http://www.ngdc. noaa.gov/mgg/coastal/crm.html.

  49. Hydro-Carbon Hydrate Accumulations in the Okhotsk Sea (CHAOS Project Leg I and Leg II), Ed. by T. Matveeva, V. Soloviev, H. Shoji, and A. Obzhirov (VNIIOkeangeologia, St. Petersburg, 2005).

  50. Operation Report of Sakhalin Slope Gas Hydrate Project 2011, Ed. by H. Shoji, Y. K. Jin, A. Obzhirov, and B. Baranov (Kitami Inst. of Technology, Kitami, 2012).

  51. KOMEX II, Kurile Okhotsk Sea Marine Experiment: Cruise report RV Akademik M. A. Lavrentyev cruise 29, Leg 1 and Leg 2: Vladivostok - Pusan - Okhotsk Sea - Pusan - Okhotsk Sea - Pusan - Vladivostok, Ed. by N. Biebow, R. Kulinich, and B. Baranov (GEOMAR, Kiel, 2003).

  52. G. V. Shevchenko, A. V. Fain, A. B. Rabinovich, and R. N. Mansurov, in Natural Disasters and Hazards in the Russian Far East (Dal’nevost. Otd. Akad. Nauk SSSR, Vladivostok, 1990), Vol. 1, p. 253.

    Google Scholar 

  53. V. K. Gusiakov, L. B. Chubarov, and S. A. Beisel, J. Volcanol. Seismol. 9, 276 (2015).

    Article  Google Scholar 

  54. L. I. Lobkovskii, E. A. Kulikov, A. B. Rabinovich, A. I. Ivashchenko, I. V. Fain, and T. N. Ivel’skaya, Dokl. Earth Sci. 419, 320 (2008). doi 10.1134/S1028334X0802030X

    Article  ADS  Google Scholar 

  55. I. V. Fine, E. A. Kulikov, and J. Y. Cherniawsky, Pure Appl. Geophys. 170, 1295 (2013).

    Article  ADS  Google Scholar 

  56. G. Hayes, “Preliminary finite fault results for the Nov 15, 2006 Mw 8.3 Kuril Islands earthquake (version 1).” http://earthquake.usgs.gov/earthquakes/eventpage/usp000exfn#finite-fault.

  57. I. V. Fain and E. A. Kulikov, Vychisl. Tekhnol. 16 (2), 111 (2011).

    Google Scholar 

  58. M. A. Nosov and S. V. Kolesov, Moscow Univ. Phys. Bull. 64, 208 (2009).

    Article  ADS  Google Scholar 

  59. M. A. Nosov and S. V. Kolesov, Pure Appl. Geophys. 168, 1223 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kulikov.

Additional information

Original Russian Text © E.A. Kulikov, V.K. Gusiakov, A.A. Ivanova, B.V. Baranov, 2016, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2016, No. 5, pp. 14–32.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, E.A., Gusiakov, V.K., Ivanova, A.A. et al. Numerical tsunami modeling and the bottom relief. Moscow Univ. Phys. 71, 527–536 (2016). https://doi.org/10.3103/S002713491605012X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713491605012X

Keywords

Navigation