Skip to main content
Log in

Numerical Modeling of Ocean Dynamics Using the NEMO Model with Data Assimilation Using a Generalized Kalman Filter

  • Published:
Moscow University Computational Mathematics and Cybernetics Aims and scope Submit manuscript

Abstract

A study is performed of the spatiotemporal variability of the parameters of the Nucleus Model of Ocean Circulation for European Modeling of the Ocean (NEMO) with data assimilated by a generalized Kalman filter (GKF) described earlier by the authors. A fundamentally new approach based on the theory of stochastic differential equations is proposed to determine key GKF parameters. It is shown how these parameters influence the calculations of the model. This approach does not require preliminary construction of the ensemble of model states or assume the model is unbiased (with no systemic error) in regard to observations. The proposed approach allows the asymptotic behavior of model parameters to be obtained, particularly estimates of the probability they will not exceed some fixed level in the considered time interval of modeling. The spatiotemporal variability of ocean parameters is modeled with NEMO using the proposed data assimilation and observations from the Argo archive. Numerical calculations are made on the K-60 supercomputer at the Russian Academy of Sciences’ Keldysh Institute of Applied Mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

REFERENCES

  1. K. P. Belyaev and V. N. Solov’ev, ‘‘The numerical calculations of the thermohydrodynamic eguations for the ocean current model in the subpolar frontal zone of North Atlantic,’’ Mat. Model. 8 (11), 87–95 (1996).

    MATH  Google Scholar 

  2. G. I. Marchuk and V. B. Zalesny, ‘‘Modeling of the World Ocean circulation with the four-dimensional assimilation of temperature and salinity fields,’’ Izv. Atmos. Ocean. Phys. 48 (1), 15–29 (2012). https://doi.org/10.1134/S0001433812010070

    Article  Google Scholar 

  3. R. Tardiff, G. J. Hakim, and C. Snider, ‘‘Coupled atmosphere–ocean assimilation experiments with a low-order climate model,’’ Clim. Dyn. 43, 1631–1643 (2014).  https://doi.org/10.1007/s00382-013-1989-0

    Article  Google Scholar 

  4. C. A. S. Tanajura and K. Belyaev, ‘‘A sequential data assimilation method based on the properties of a diffusion-type process,’’ Appl. Math. Modell. 33 (5), 2165–2174 (2009). https://doi.org/10.1016/j.apm.2008.05.021

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Belyaev, A. Kuleshov, N. Tuchkova, and C. A. S. Tanajura, ‘‘An optimal data assimilation method and its application to the numerical simulation of the ocean dynamics,’’ Math. Comp. Modell. Dyn. Syst. 24 (1), 12–25 (2018). https://doi.org/10.1080/13873954.2017.1338300

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Belyaev, A. Kuleshov, and I. Smirnov, ‘‘Spatial–temporal variability of the calculated characteristics of the ocean in the Arctic Zone of Russia by using the NEMO model with altimetry data assimilation,’’ J. Mar. Sci. Eng. 8 (10), 753 (2020). https://doi.org/10.3390/jmse8100753

    Article  Google Scholar 

  7. K. Belyaev, A. Kuleshov, I. Smirnov, and C. A. S. Tanajura, ‘‘Generalized Kalman filter and Ensemble Optimal Interpolation, their comparison and application to the Hybrid Coordinate Ocean Model,’’ Mathematics 9 (19), 2371 (2021). https://doi.org/10.3390/math9192371

    Article  Google Scholar 

  8. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random Processes (Dover Publcations, New York, 1996).

    MATH  Google Scholar 

  9. K. P. Belyaev, A. A. Kuleshov, and N. P. Tuchkova, ‘‘Correction of systematic error and estimation of confidence limits for one data assimilation method,’’ Lobachevskii J. Math. 41 (10), 1964–1970 (2020). https://doi.org/10.1134/S1995080220100054

    Article  MathSciNet  MATH  Google Scholar 

  10. K. P. Belyaev, J. J. O’Brien, and P. A. Nobre, ‘‘A data assimilation method used with an ocean circulation model and its application to the tropical Atlantic data analysis,’’ J. Math. Sci. 106 (2), 2792–2802 (2001). https://doi.org/10.1023/A:1011359624635

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Belyaev, S. D. Meyers, and J. J. O’Brien, ‘‘Application of the Fokker-Planck equation to data assimilation into hydrodynamical models,’’ J. Math. Sci. 99 (4), 1393–1402 (2000). https://doi.org/10.1007/BF02673714

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Madec, and the NEMO team, NEMO Ocean Engine, Note du Pôle de modélisation No. 27 (Institut Pierre-Simon Laplace, France, 2016).

  13. Observation Data Archive from Argo floats. https://argo.ucsd.edu.

Download references

Author information

Authors and Affiliations

Authors

Contributions

K. P. Belyaev, Leading Researcher, Shirshov Institute of Oceanology; Prof., Dr. Sci. (Phys.-Math.), Faculty of Computational Mathematics and Cybernetics, Moscow State University.

A. A. Kuleshov, Chief Researcher, Dr. Sci. (Phys.-Math.), Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.

I. N. Smirnov, Assoc. Prof., Cand. Sci. (Phys.-Math.), Moscow State University.

Corresponding authors

Correspondence to K. P. Belyaev, A. A. Kuleshov or I. N. Smirnov.

Ethics declarations

This work was supported by the Russian Science Foundation, project no. 22-11-00053.

Additional information

Translated by E. Smirnova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, K.P., Kuleshov, A.A. & Smirnov, I.N. Numerical Modeling of Ocean Dynamics Using the NEMO Model with Data Assimilation Using a Generalized Kalman Filter. MoscowUniv.Comput.Math.Cybern. 46, 111–116 (2022). https://doi.org/10.3103/S0278641922030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0278641922030025

Keywords:

Navigation