Skip to main content
Log in

Development of the multiscale version of the SL-AV global atmosphere model

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The global hydrodynamic atmosphere model SL-AV is applied for operational mediumrange weather forecast and as a component of the probabilistic long-range forecast system. The review of the previous development of the model is presented and the model features are noted. The existing model versions are described. The unified multi-scale version of the model is developed on the basis of these versions. This version is intended both for numertcal weather prediction and for modeling of climate changes. The numerical experiments on climate modeling with the developed multi-scale version are carried out according to the protocol of the international AMIP2 experiment. First results are pret ented. The pos tibiltty of application of the unified vertion of the SL-AV model for the met dium-range weather forecast, and, after some development, for modeling of climate changes is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogoslovskii and M. A. Tolstykh, "Implementation of Assimilation Scheme for Soil Variables in the Global Semi-Lagrangian NWP Model," J. Comput. Technol., 11, Special issue, Part 3 (2006) [in Russian].

    Google Scholar 

  2. N. N. Bogoslovskii, M. A. Tolstykh, and A. V. Shlyaeva, "Data Assimilation for Surface and Soil Variables in the Global Semi-Lagrangian NWP Model," J. Comput. Technol., 13, Special issue 3 (2008) [in Russian].

    Google Scholar 

  3. E. M. Volodin and V. N. Lykosov, "Parameterization of Heat and Moisture Processes in Soil-Vegetation System. 1. Description and Calculations Using Local Observational Data," Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 34 (1998) [Izv., Atmos. Oceanic Phys., No. 4, 34 (1998)].

    Google Scholar 

  4. E. M. Volodin and M. A. Tolstykh, "Parallel Computations in Problems of Climate Simulation and Numerical Weather Prediction," Numerical Methods and Programming, 8 (2007) [in Russian].

    Google Scholar 

  5. S. V. Kostrykin and I. N. Ezau, "Dynamic-stochastic Scheme for Calculation of Large-scale Precipitation and Cloudiness," Meteorol. Gidrol., No. 7 (2001) [Russ. Meteorol. Hydrol., No. 7 (2001)].

    Google Scholar 

  6. G. Marchuk, Numerical Methods in Weather Prediction (Academic Press, NewYork-London, 1974).

  7. G. I. Marchuk, V. P. Dymnikov, and V. B. Zalesny, Mathematical Modeling of the General Circulation of the Atmosphert and Ocean (Gidrometeoizdat, Leningrad, 1984) [in Russian].

  8. F. Mesinger, A. Arakawa, Numerical Methods Used in Atmospheric Models, Vol. 1 (GARP Publications Series No. 17, ICSU/WMO, Geneva, 1979).

  9. A. Rober, "A Semi-implicit Method," in Numerical Methods Used in Atmospheric Models, Vol. 2 (GARP Publications Series No. 17, ICSU/WMO, Geneva, 1979).

  10. M. A. Tolstykh, "The Impact of Snow Albedo Parameterization in the Global Atmosphere Model on Mediumand Longe-range Numerical Forecasts," in Proceedings of the Hydrometcenter of Russia, Vol. 352 (2014).

  11. M. A. Tolstykh, Global Semi-Lagrangian Numerical Weather Prediction Model (JSC FOP, Moscow, Obninsk, 2010).

  12. M. A. Tolstykh, "Semi-Lagrangian High-resolution Model of the Atmosphere for Numerical Weather Prediction," Meteorol. Gidrol., No. 4 (2001) [Russ. Meteorol. Hydrol., No. 4 (2001)].

  13. M. A. Tolstykh, N. A. Diansky, A. V. Gusev, and D. B. Kiktev, "Simulation of Seasonal Anomalies of Atmospheric Circulation Using Coupled Atmosphere-Ocean Model," Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 50 (2014) [Izv., Atmos. Oceanic Phys., No. 2, 50 (2014)].

    Google Scholar 

  14. A. Yu. Yurova and M. A. Tolstykh, "Error Analysis of Two Solar Radiation Calculation Algorithms for the Atmosphere General Circulation Models," in Proceedings of the Hydrometcenter of Russia, No. 348 (2012) [in Russian].

  15. B. Catry, J.-F. Geleyn, M. Tudor, et al., "Flux-conservative Thermodynamic Equations in a Mass-weighted Framework," Tellus A, No. 1, 59 (2007).

    Google Scholar 

  16. M.-D. hou and M. J. Suarez, "A Sotar Radiation Parameterization (CLIRAD-SW) for Atmospheric Studies," NASA Tech. Memo. 10460, 15, NASA Goddard Space Flight Center, Greenbelt, MD (1999).

  17. R. De Troch, R. Hamdi, H. van de Vyver, et al., "Multiscale Performance of the ALARO-0 Model for Simulating Extreme Summer Precipitation Climatology in Belgium," J. Climate, 26 (2013).

    Google Scholar 

  18. J.-F. Geleyn, E. Bazile, P. Bougeault, et al., "Atmospheric Parameterization Schemes in Meteo-France’s ARPEGE N.W.P. Model," in Parameterization of Subgrid-scale Physical Processes, ECMWF Seminar Proceedings (Reading, UK, 1994).

  19. L. Gerard, J.-M. Piriou, R. Brozkova, et al., "Cloud and Precipitation Parameterization in a Meso-gamma-scale Operational Weather Prediction Model," Mon. Wea. Rev., 137 (2009).

    Google Scholar 

  20. M. Hortal, "The Development and Testing of a New Two-Time-Level Semi-Lagrangian Scheme (SETTLS) in the ECMWF Forecast Model," Quart. J. Roy. Meteorol. Soc., 128 (2002).

    Google Scholar 

  21. B. Hoskins, "The Potential for Skill Across the Range of the Seamless Weather-climate Prediction Problem: A Stimulus for Our Science," Quart. J. Roy. Meteorol. Soc., 139 (2013).

    Google Scholar 

  22. E. J. Mlawer, S. J. Taubman, P. D. Brown, et al., "RRTM, a Validated Correlated-k Model for the Longwave," J. Geophys. Res., No. 16, 102 (1997).

    Google Scholar 

  23. B. Neta and R. T. Williams, "Rossby Wave Frequencies and Group Velocities for Finite Element and Finite Difference Approximations to the Vorticity-divergence and Primitive Forms of the Shallow Water Equations," Mon. Wea. Rev., 17 (1989).

    Google Scholar 

  24. J. Noilhan and J.-F. Mahfouf, "The ISBA Land Surface Parameterization Scheme," Global Planet. Change, 13 (1996).

    Google Scholar 

  25. D. A. Randall, "Geostrophic Adjustment and the Finite-difference Shallow Water Equations," Mon. Wea. Rev., 122 (1994).

    Google Scholar 

  26. V. V. Shashkin and M. A. Tolstykh, "Inherently Mass-conservative Version of the Semi-Lagrangian Absotute Vorticity (SL-AV) Atmospheric Model Dynamical Core," Geosci. Mod. Develop., 7 (2014).

    Google Scholar 

  27. J. Shukla, T. DelSole, M. Fennessy, et al., "Climate Model Fidelity and Proj ections of Climate Change," Geophys. Res. Lett., L07702, 33 (2006).

  28. A. Staniforth and J. Co te, "Semi-Lagrangian Integration Schemes for Atmospheric Models. A Review," Mon. Wea. Rev., 119 (1991).

    Google Scholar 

  29. T. Tarasova and B. Fomin, "The Use of New Parameterizations for Gaseous Absorption in the CLIRAD-SW Solar Radiation Code for Models," J. Atmos. and Oceanic Technology, No. 6, 24 (2007).

    Google Scholar 

  30. M. Tolstykh, "The Use of Combined Closure in Convection Parameterization Scheme," Research Actmties in Atmospheric and Oceanic Modeling, Rep. 33, Ed. by J. Co te, WMO/TD 1161 (2003).

    Google Scholar 

  31. M. A. Tolstykh, "Variable Resolution Global Semi-Lagrangian Atmospheric Model," Russ. J. Numer. Anal. and Math. Modelling, No. 4, 18 (2003).

    Google Scholar 

  32. M. A. Tolstykh, "Vorticity-divergence Semi-Lagrangian Shallow-water Model on the Sphere Based on Compact Finite Differences," J. Comput. Phys., 179 (2002).

    Google Scholar 

  33. M. Tolstykh and V. Shashkin, "Vorticity-divergence Mass-conserving Semi-Lagrangian Shaltow-water Model Using the Reduced Grid on the Sphere," J. Comput. Phys., 231 (2012).

    Google Scholar 

  34. D. L. Williamson, J. B. Drake, et al., "A Standard Test Set for Numerical Approximations to the Shallow Water Equations in Spherical Geometry," J. Comput. Phys., 102 (1992).

    Google Scholar 

  35. A. Yurova, M. Tolstykh, M. Nilsson, and A. Sirin, "Parameterization of Mires in a Numerical Weather Prediction Model," Water Resour. Res., No. 11, 50 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Tolstykh.

Additional information

Original Russian Text © M.A. Tolstykh, J.-F. Geleyn, E.M. Volodin, N.N. Bogoslovskii, R.M. Vilfand, D.B. Kiktev, T. V. Krasjuk, S.V. Kostrykin, V.G. Mizyak, R.Yu. Fadeev, V.V. Shashkin, A. V. Shlyaeva, I.N. Ezau, A.Yu. Yurova, 2015, published in Meteorologiya i Gidrologiya, 2015, No. 6, pp. 25-35.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolstykh, M.A., Geleyn, JF., Volodin, E.M. et al. Development of the multiscale version of the SL-AV global atmosphere model. Russ. Meteorol. Hydrol. 40, 374–382 (2015). https://doi.org/10.3103/S1068373915060035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373915060035

Keywords

Navigation