Skip to main content
Log in

Analytical Synthesis of a Modal Controller by Output Vector for Attitude Control of a Descent Module during Its Descent in the Earth’s Atmosphere

  • Flight Dynamics and Control of Flight Vehicles
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

A new analytical algorithm of modal control is developed for the sixth-order control system that represents the problem of descent module attitude stabilization using the values of two angles measured by free gyroscope and three components of angular velocity vector with respect to the corresponding coordinate axes measured by the angular velocity sensor. This algorithm belongs to the category of dynamic object control algorithms by the output vector and it is based on synthesis of a state vector observer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evdokimov, S.N., Klimanov, S.I., Korchagin, A.N., Mikrin, E.A., and Sikharulidze, Yu.G., Control of Downrange and Crossrange Motion of a Descent Module in a Certain Range of Reentry Angles with Load Factor Constraints, Izv. RAN. Teoriya i Sistemy Upravleniya, 2012, no. 6, pp. 63–79 [Journal of Computer and Systems Sciences International (Engl. Transl.), vol. 51, no. 6, pp. 802–817].

    Article  Google Scholar 

  2. Evdokimov, S.N., Klimanov, S.I., Korchagin, A.N., Mikrin, E.A., and Sikharulidze, Yu.G., Terminal Control Algorithm for the Downrange Motion of a Descent Module with Load Factor Constraints, Izv. RAN. Teoriya i Sistemy Upravleniya, 2012, no. 5, pp. 102–118 [Journal of Computer and Systems Sciences International (Engl. Transl.), vol. 51, no. 5, pp. 715–731].

    Article  Google Scholar 

  3. Evdokimov, S.N., Klimanov, S.I., Komarova, L.I., and Mikrin, E.A., Control of Angular Motion of a Landing Module of “Soyuz” Type upon Satellite Returning from the Orbits, Izv. RAN. Teoriya i Sistemy Upravleniya, 2011, no. 5, pp. 153–163 [Journal of Computer and Systems Sciences International (Engl. Transl.), vol. 50, no. 5, pp. 826–836].

    Article  MathSciNet  Google Scholar 

  4. Zubov, N.E. and Ryabchenko, V.N., Upravlenie kosmicheskim apparatom pri skhode s orbity i dvizhenii v atmosfere (Control of Spacecraft and Motion in Atmosphere), Korolev: RKK “Energiya” im. S.P. Koroleva, 2015.

    Google Scholar 

  5. Okhotsimskii, D.E., Golubev, Yu.F., and Sikharulidze, Yu.G., Algoritmy upravleniya kosmicheskim apparatom pri vkhode v atmosferu (Algorithms of Controlling a Spacecraft at Its Entry into the Atmosphere), Moscow: Nauka, 1975.

    Google Scholar 

  6. Zubov, N.E., Mikrin, E.A., and Ryabchenko, V.N., Matrichnye metody v teorii i praktike sistem avtomaticheskogo upravleniya letatel’nykh apparatov (Matrix Methods in the Theory and Practice of Aircraft Automatic Control Systems), Moscow: MGTU im. N.E. Baumana, 2016.

    Google Scholar 

  7. Zubov, N.E., Lapin, A.V., Mikrin, E.A., and Ryabchenko, V.N., Output Control of the Spectrum of a Linear Dynamic System in Terms of the Van der Woude Method, Doklady Mathematics, 2017, vol. 96, no. 2, pp. 457–460.

    Article  MathSciNet  Google Scholar 

  8. Zubov, N.E., Zybin, E.Yu., Mikrin E.A., Misrikhanov, M.Sh., Proletarskii, A.V., and Ryabchenko, V.N., Output Control of a Spacecraft Motion Spectrum, Izv. RAN. Teoriya i Sistemy Upravleniya, 2014, no. 4, pp. 111–122 [Journal of Computer and Systems Sciences International, 2014, vol. 53, no. 4, pp. 576–586].

    Article  MathSciNet  Google Scholar 

  9. Romanenko, L.G., Romanenko, A.G., and Samarova, G.G., Aircraft Longitudinal Control without a Pitch Command in the Autopilot, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 4, pp. 25–29 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 4, pp. 361–367].

    Google Scholar 

  10. Romanenko, L.G., Samarova, G.G., and Romanenko, A.G., Aircraft Lateral-Directional Control without a Roll Command in the Autopilot, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 2, pp. 19–23 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 2, pp. 134–140].

    Google Scholar 

  11. Rodnishchev, N.E., Romanenko, L.G., and Denisov, K.G., To Estimation of Control Law Parameters for the Lateral Motion of Aircraft Taking into Account Wind Disturbances, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 44–49 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 4, pp. 407–412].

    Google Scholar 

  12. Zubov, N.E., Mikrin, E.A., Misrikhanov, M.S., and Ryabchenko, V.N., Stabilization of Coupled Motions of an Aircraft in the Pitch-Yaw Channels in the Absence of Information About the Sliding Angle: Analytical Synthesis, Izv. RAN. Teoriya i Sistemy Upravleniya, 2015, no. 1, pp. 95–105 [J. of Computer and Systems Sciences International (Engl. Transl.), vol. 54, no. 1, pp. 93–103].

    Article  MathSciNet  Google Scholar 

  13. Zubov, N.E., Mikrin, E.A., Misrikhanov, M.S., and Ryabchenko, V.N., Output Control of the Longitudinal Motion of a Flying Vehicle, Izv. RAN. Teoriya i Sistemy Upravleniya, 2015, no. 5, pp. 164–175 [J. of Computer and Systems Sciences International (Engl. Transl.), vol. 54, no. 5, pp. 825–837].

    Article  MathSciNet  Google Scholar 

  14. Zubov, N.E., Mikrin, E.A., Ryabchenko, V.N., and Fomichev, A.V., Synthesis of Control Laws for Aircraft Lateral Motion at the Lack of Data on the Slip Angle: Analytical Solution, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 1, pp. 61–70 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 1, pp. 64–73].

    Google Scholar 

  15. Gantmacher, F.R., The Theory of Matrices, New York: Chelsea Publishing Company, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Zubov.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2019, No. 3, pp. 46–59.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubov, N.E., Lapin, A.V. & Ryabchenko, V.N. Analytical Synthesis of a Modal Controller by Output Vector for Attitude Control of a Descent Module during Its Descent in the Earth’s Atmosphere. Russ. Aeronaut. 62, 401–416 (2019). https://doi.org/10.3103/S1068799819030073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799819030073

Keywords

Navigation